Lesson Plan

Even Semester Mathematics (Major/Hons.) CCF + CBCS

Planned					nentation		
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Commen ts		
SEM II (Major) MATH-H-CC2-2-TH Basic Algebra							

Group A Polar representation of complex numbers, <i>nth</i> roots of unity, De Moivre's theorem for rational indices and its applications. Exponential, logarithmic, trigonometric, and hyperbolic functions of complex variable.	Complex Analysis	Titu Andreescu and DorinAndrica, Complex Numbers from A to Z,	2	Chalk and Talk, Notes	PL
Group A Theory of equations: Relation between roots and coefficients, transformation of equation, Descartes rule of signs, Application of Sturm's theorem, cubic equation (solution by Cardan's method), and biquadratic equation (solution by Ferrari's method). Inequalities: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality.	Classical Algebra	Classical Algebra, S.K. Mapa	6	Chalk and Talk, Notes, tutorial, class work	PL

Group B Relation: equivalence relation, equivalence classes & partition, partial order relation, poset, linear order relation. Mapping: composition of mappings, relation between composition of mappings and various set theoretic operations. Meaning and properties of $f-1$ (B), for any mapping $f: X \to Y$ and $B \subseteq Y$.	Algebra	David C. Lay, Linear Algebra and its Applications Higher Algebra, S.K. Mapa	5	Chalk and Talk, Notes, tutorial, class work	AB
---	---------	---	---	---	----

Group B					BS
Well-ordering property of positive integers, Principles of Mathematical induction, equivalence of Wellordering property and Principles of Mathematical induction (statement only), division algorithm, divisibility and Euclidean algorithm. Prime numbers and their properties, Euclid's theorem. Congruence relation between integers. Fundamental Theorem of Arithmetic. Chinese remainder theorem. Arithmetic functions, some arithmetic functions such as ϕ , τ , σ and their properties.	Algebra	Higher Algebra, S.K. Mapa	6	Chalk and Talk, Notes, tutorial, class work	

Group C Systems of linear equations, homogeneous and non-homogeneous systems. Existence and Uniqueness of solution. The matrix equation $Ax = b$, row reduction and echelon forms, uniqueness of reduced echelon form. Rank of a matrix and characterization of invertible matrices. Pivot positions	Linear Algebra	Gilbert Strang; Introduction to Linear Algebra (5th Edition)	6	Chalk and Talk, Notes, tutorial, class work	AB
forms, uniqueness of reduced echelon form. Rank of a matrix and characterization of	Linear Algebra	Introduction to Linear Algebra (5th	6	Notes, tutorial, class work	
invertible matrices Pivot nositions		Edition			
basic and free variables, parametric					
description of					
the solution set. Existence and					
uniqueness theorem.					

Group CVectors in R^n , algebraic and geometric properties of the vectors. Vector form of alinear system and the column picture. Existence of solutions and linear combination ofvectors. Geometry of linear combination and subsets spanned by some vectors.Uniqueness of solution and linear independence of vectors. Algebraic and geometric	Linear Algebra	Gilbert Strang; Introduction to Linear Algebra (5th Edition)	6	Chalk and Talk, Notes, tutorial, class work	MH
characterizations of linearly independent subsets.					

Planned					After Implementation	
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s	
SEM II (I	Major) N	1ATH-H-SEC 2.2-2	2-Th			
	Artificial l	Intelligence				
Unit 1: Introduction to Artificial Intelligence • Definition and scope of AI • Historical overview and key milestones • Differentiating AI from human intelligence	Artificial Intelligence		2	Chalk and Talk, Notes, Hands on Experience, Research Work, Term Paper Submission	DP	
 Unit 2: AI Subfields and Technologies Machine learning: Supervised, unsupervised, and reinforcement learning Deep learning and neural networks Natural language processing (NLP) and computer vision 	Artificial Intelligence	Russell / Norvig , ARTIFICIAL INTELLIGENCE: A MODERN APPROACH	3	Chalk and Talk, Notes, Hands on Experience, Research Work, Term Paper Submission	DP	
Unit 3: Applications of AI	Artificial Intelligence	Russell / Norvig , ARTIFICIAL	6	Chalk and Talk, Notes, Hands on	DP	

 AI in healthcare: Diagnosis, treatment, and medical imaging AI in finance: Fraud detection, algorithmic trading, and risk assessment AI in transportation: Autonomous vehicles and traffic optimization AI in customer service and chatbots AI in education: Personalized learning and intelligent tutoring systems 		INTELLIGENCE: A MODERN APPROACH		Experience, Research Work, Term Paper Submission	
 Unit 4: Ethical and Social Implications of AI Bias and fairness in AI systems Privacy and data protection concerns Impact of AI on employment and the workforce AI and social inequality 	Artificial Intelligence	Russell / Norvig , ARTIFICIAL INTELLIGENCE: A MODERN APPROACH	6	Chalk and Talk, Notes, Hands on Experience, Research Work, Term Paper Submission	DP
Unit 5: Other Important Issues • Ethical guidelines and responsible AI practices • AI and Innovation	Artificial Intelligence	Russell / Norvig , ARTIFICIAL INTELLIGENCE: A MODERN APPROACH	6	Chalk and Talk, Notes, Hands on Experience, Research Work, Term	DP

• Emerging trends and future directions in AI		Paper Submission	
• AI and creativity: Generative models and artistic applications			

Planned					mentation
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s
SEM IV ((Major)	МАТН-Н-СС	C5-4-Th		
,	Theory o	f Real Functions			
Limits of functions ($\epsilon - \delta$ approach), sequential criterion for limits. Cauchy's criterion of existence of limit (statement only). Limit theorems, one sided limits. Infinite limits and limits at infinity. Important limits like $\frac{\sin x}{x}, \frac{\log(1+x)}{x}, \frac{a^{x}-1}{x}$ ($a > 0$) as $x \to 0$. Continuity of a function on an interval and at an isolated point. Sequential criteria for continuity. Concept of oscillation of a function at a point. A function is continuous at x if and only if its oscillation at x is zero. Familiarity with the figures of some well known functions: $y = xx^{a}$ ($a = 2, 3, 1/2, -1$), $ x , [x]$, sin x, cos x, tan x, log x, ee ^x . Algebra of continuous functions at a point. Continuity of composite functions. Examples of continuous functions. Continuity of a function at a point does not necessarily imply the continuity in some neighbourhood of that point.	Limit and Continui ty	R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis. T. M. Apostol, Mathematical Analysis,	15	Chalk and Talk, Notes	AB

Bounded functions. Neighbourhood properties of continuous functions regarding boundedness and maintenance of same sign. Continuous function on a closed interval [a, b] is bounded and attains its bounds therein. Bolzano's theorem. Intermediate value theorem. Discontinuity of functions, type of discontinuity. Step functions. Piecewise continuity. Monotone functions. Monotone functions can have only jump discontinuity. Monotone functions can have at most countably many points of discontinuity. Monotone bijective function from an interval to an interval is continuous and its inverse is also continuous.	Limit and Continui ty	R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis. T. M. Apostol, Mathematical Analysis,	15	Chalk and Talk, Notes	AB
Uniform continuity. Functions continuous on a closed and bounded interval is uniformly continuous. A necessary and sufficient condition under which a continuous function on a bounded open interval I will be uniformly continuous on I. A sufficient condition under which a continuous function on an unbounded open interval I will be uniformly continuous on I (statement only). Lipschitz condition and uniform continuity.	Limit and Continui ty	R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis. T. M. Apostol, Mathematical Analysis,	10	Chalk and Talk, Notes	AB

Review of Group A	Limit and Continui ty	R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis. T. M. Apostol, Mathematical Analysis,	5	Chalk and Talk, Notes, Interactive session	AB
Group B Darboux theorem, Rolle's theorem, Mean value theorems of Lagrange and Cauchy - as an application of Rolle's theorem. Taylor's theorem on closed and bounded interval with Lagrange's and Cauchy's form of remainder. Expansion of e^x , log $(1 + x)$, $(1 + x)^m$, sin x, cos x with their range of validity (assuming relevant theorems). Application of Taylor's theorem to inequalities. Point of local extremum (maximum, minimum) of a function in an interval. Sufficient condition for the existence of a local maximum/minimum of a function at a point (statement only). Application of the principle of maximum/minimum in geometrical problems.	Differen tiability of Function s	R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis. T. M. Apostol, Mathematical Analysis,	20	Chalk and Talk, Notes, Interactive session	PL

Review of Group B	Differen tiability of Function s	R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis. T. M. Apostol, Mathematical Analysis,	4	Chalk and Talk, Notes, Interactive session	PL
-------------------	--	---	---	---	----

Planned				After Implementation	
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s
SEM IV ((Major)	МАТН-Н-СС	C6-4-Th		
	Me	chanics – I			
Statics-I: Idea about Physical Independence Principle of Forces, Principle of transmissibility of a force, Principle of action and reaction and Principle of parallelogram law of forces, Composition and resolution of forces, Concurrent Forces in a plane, Composition and resolution of forces, Equilibrium of three forces acting at a point, Lami's theorem, Moment of a force about a point and an axis, Varignon's theorem, Resultant forces and resultant couple, Coplanar forces: Its reduction and conditions of equilibrium	Statics-I	S. L. Loney, An Elementary Treatise on Statics, Cambridge University Press, 1917 (2nd edition). A. S. Ramsey, Dynamics (Part I& Part II), CBS Publishers, 2002 (2nd edition).	07	Chalk and Talk, Google Classroom, Hand Notes	BS

Review of Statics-I	Statics	S. L. Loney, An Elementary Treatise on the Dynamics of particle and of Rigid Bodies, Cambridge University Press, 1913	01	Chalk and Talk, Google Classroom, Hand Notes	BS
		A. S. Ramsey, Dynamics (Part I& Part II), CBS Publishers, 2002 (2nd edition).			
Particle Dynamics-I: Law of gravitation, Concept of inertial frame, Newton's laws of motion, Concept of equation of motion of a particle, Rectilinear motion in a given force field, Simple harmonic motion, damped and forced oscillations, Concept of resonance, motion of elastic strings, Rectilinear motion under uniform gravity, Rectilinear motion in a resisting medium where resistance is proportional to velocity.	Particle Dynamic s	S. L. Loney, An Elementary Treatise on the Dynamics of particle and of Rigid Bodies, Cambridge University Press, 1913 A. S. Ramsey, Dynamics (Part I& Part II), CBS Publishers, 2002 (2nd edition).	16	Chalk and Talk , Google Classroom, Hand Notes	МН

Work, power, energy, Conservative forces, Potential energy, Existence of potential energy function, Conservative field and Principle of conservation of energy.	Particle Dynamic s	S. L. Loney, An Elementary Treatise on the Dynamics of particle and of Rigid Bodies, Cambridge University Press, 1913	06	Chalk and Talk, Google Classroom, Hand Notes	MH
		A. S. Ramsey, Dynamics (Part I& Part II), CBS Publishers, 2002 (2nd edition).			
Impulse of a force, Impulsive force, Principle of conservation of linear momentum, Collision of elastic bodies: Coefficient of restitution, Newton's law of collision, Direct and oblique impact of a smooth sphere with a fixed plane, Direct and oblique impact of two smooth spheres.	Particle Dynamic s	S. L. Loney, An Elementary Treatise on the Dynamics of particle and of Rigid Bodies, Cambridge University Press, 1913 A. S. Ramsey, Dynamics (Part I&	06	Chalk and Talk, Google Classroom, Hand Notes	MH
		Part II), CBS Publishers, 2002 (2nd edition).			

	Dartiala	S. L. Loney, An	16	Chalk and	МН
Motion of a particle in a plane (2D Cartesian):	Dvnamic	Elementary Treatise	10	Talk, Google	
Angular velocity and angular acceleration,	S S	on the Dynamics of		Classroom,	
appressions for components of velocity and	5			Hand Notes	
cceleration, rangential and normal components of		particle and of Rigid			
velocity and acceleration, Motion of a projectile in		Bodies, Cambridge			
a resisting medium under gravity. Motion of a particle in a plane (2D Polar): Expressions for		University Press, 1913			
components of velocity and acceleration, Central		A. S. Ramsev.			
forces and central orbits, Motion under inverse		Dynamics (Part 1&			
square law, Times of describing the arcs of central		Dynamics (1 art 100			
orbits for a particle moving under inverse square		Part II), CBS			
law, Kepler's laws on planetary motion, Motion of		Publishers, 2002 (2nd			
artificial satellites, Tangential and normal		edition).			
components of velocity and acceleration,					
Constrained motion of a particle on smooth curve.					
Review of Paticle Dynamics-I	Particle	S. L. Loney, An	6	Chalk and	MH
v	Dynamic	Elementary Treatise		Talk, Google	
	S	on the Dynamics of		Classroom,	
		particle and of Rigid		Hand Notes	
		Rodies Cambridge			
		University Press 1013			
		University Fress, 1915			
		A S Ramsev			
		Dynamics (Dant I P-			
		Dynamics (Part 1&			
		Part II), CBS			
		Publishers, 2002 (2nd			
		edition).			

Planned				After Implementation	
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s
SEM IV ((Major)	МАТН-Н-СС	2 7-4- Th		
Multivariate	e Calculu	s – I and Partial D	ifferential		
	Eq	uations – I			
Group A: Multivariate Calculus – I Concept of neighbourhood of a point in \mathbb{R}^n (n > 1), interior point, limit point, open sets and closed sets in \mathbb{R}^n (n > 1). Functions from \mathbb{R}^n (n > 1) to \mathbb{R} , limit and continuity of functions of two or more variables. Partial derivatives, related mean value theorem, sufficient condition for continuity. Differentiability, sufficient condition for differentiability.	Multivar iate Calculus	J. Stewart, Multivariable Calculus, Concepts and Contexts, 2nd Ed T. Apostol, Mathematical Analysis, Narosa Publishing House. E. Marsden, A. J. Tromba and A. Weinstein, Basic Multivariable Calculus,	10	Chalk and Talk, Google Classroom, Hand Notes	BS

Directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes.	Multivar iate Calculus	J. Stewart, Multivariable Calculus, Concepts and Contexts, 2nd Ed	10	Chalk and Talk, Google Classroom, Hand Notes	BS
Partial derivatives of higher order, sufficient condition for equality of mixed order partial derivatives (Schwarz's and Young's theorems), differentials of higher orders, total differential for function of functions, Chain rule for one and two		T. Apostol, Mathematical Analysis, Narosa Publishing House.			
independent parameters. Euler's theorem on homogeneous functions of two and three variables, change of variables – simple problems. Taylor's theorem of two variables.		E. Marsden, A. J. Tromba and A. Weinstein, Basic Multivariable Calculus,			

Implicit functions, statement of the existence theorem, derivative of implicit functions – simple problems. Jacobians – elementary properties (statements only) and simple problems. Extrema of functions of two variables, constrained optimization problems, method of Lagrangian multipliers for two variables.	Multivar iate Calculus	J. Stewart, Multivariable Calculus, Concepts and Contexts, 2nd Ed T. Apostol, Mathematical Analysis, Narosa Publishing House.	15	Chalk and Talk, Google Classroom, Hand Notes	BS
Multiple integral: Concept of upper sum, lower sum, upper integral, lower integral and double integral (no rigorous treatment is needed). Statement of existence theorem for continuous functions.		Tromba and A. Weinstein, Basic Multivariable Calculus,			

Iterated or repeated integral, Statement of Fubini's theorem. Change of order of integration. Areas of plane regions.	Multivar iate Calculus	J. Stewart, Multivariable Calculus, Concepts and Contexts, 2nd Ed	10	Chalk and Talk, Google Classroom, Hand Notes	BS
 Triple integral. Cylindrical and spherical coordinates. Change of variables in double integrals and triple 		Apostol, Mathematical Analysis, Narosa Publishing House.			
integrals. Transformation of double and triple integrals (problems only).		E. Marsden, A. J. Tromba and A. Weinstein, Basic			
• Determination of volume and surface area by multiple integrals (problems only).		Multivariable Calculus,			
• Differentiation under the integral sign, Leibniz's rule (problems only).					

Review of Multivariate Calculus	Multivar iate Calculus	J. Stewart, Multivariable Calculus, Concepts and Contexts, 2nd Ed	05	Chalk and Talk, Google Classroom, Hand Notes	BS
		T. Apostol, Mathematical Analysis, Narosa Publishing House.			
		E. Marsden, A. J. Tromba and A. Weinstein, Basic Multivariable Calculus,			

Review of Partial Differential Equation-I	Partial Differen tial Equatio n	I. Sneddon, Elements of Partial Differential equations, McGraw- Hill International Edition	05	Chalk and Talk, Google Classroom, Hand Notes	BS
		W. A. Strauss, Partial Differential Equations			
		L. C. Evans, Partial Differential equations			

Planned					nentation			
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s			
SEM IV (Major)	МАТН-Н-СС	28-4-Th					
Group Theory – II & Ring Theory - I								
Group A : Group Theory- II Normal subgroup and its properties. Quotient group. Group homomorphisms, properties of homomorphisms, correspondence theorem and one-one correspondence between the set of all normal subgroups of a group and the set of all congruences on that group, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems.	Abstract Algebra	D. S. Malik, J. M. Mordeson and M. K. Sen; Fundamentals of Abstract Algebra; S. K. Mapa, Higher Algebra (Abstract and Linear)	14	Chalk and Talk, Google Classroom, Hand Notes	PL			

Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups. External direct product and its properties, the group of units modulo n as an external direct product, internal direct product, converse of Lagrange's theorem for finite abelian group, Cauchy's theorem for finite abelian group.	Abstract Algebra	M. K. Sen, S. Ghosh, P. Mukhopadhyay, S. K. Maity, Topics in Abstract Algebra, D. S. Malik, J. M. Mordeson and M. K. Sen; Fundamentals of Abstract Algebra;	14	Chalk and Talk, Google Classroom, Hand Notes	PL
Review of Group Theory -II	Abstract Algebra	D. S. Malik, J. M. Mordeson and M. K. Sen; Fundamentals of Abstract Algebra;	4	Chalk and Talk, Google Classroom, Hand Notes	PL
Group B: Ring Theory- I Definition and examples of rings, properties of rings, subrings, necessary and sufficient condition for a nonempty subset of a ring to be a subring, integral domains and fields, subfield, necessary and sufficient condition for a nonempty subset of a field to be a subfield, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals. Ring homomorphisms, properties of ring homomorphisms. First, Second and Third isomorphism theorems, Correspondence theorem, congruence on rings, one-one correspondence between the set of ideals and the set of all congruences on a ring.	Abstract Algebra	S. K. Mapa, Higher Algebra (Abstract and Linear) D. S. Malik, J. M. Mordeson and M. K. Sen; Fundamentals of Abstract Algebra;	25	Chalk and Talk, Google Classroom, Hand Notes	PL

Review of Ring Theory-I	Abstract	D. S. Malik, J. M.	3	Chalk and	PL
Review of King Theory I	Algebra	Mordeson and M. K.		Talk, Google	
		Sen; Fundamentals of		Classroom,	
		Abstract Algebra;		Hand Notes	
		S. K. Mapa, Higher			
		Algebra (Abstract			
		and Linear)			

CBCS

Planned				After Imple	mentation
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s
S	EM VI(I	H) CBCS CC-13			
Metr	ic Space	& Complex Analy	sis		
UNIT I Definition and examples of metric spaces. Open ball. Open set. Closed set as complement of open set. Interior point and interior of a set. Limit point and closure of a set. Boundary point and boundary of a set. Properties of interior, closure and boundary. Bounded set and diameter of a set. Distance between two sets. Subspace of a metric space	Metric Space	 S. Kumaresan, Topology of Metric Spaces P. K. Jain and K. Ahmad, Metric Spaces 	15	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems	AB
UNIT I Convergent sequence. Cauchy sequence. Every convergent sequence is Cauchy and bounded, but the converse is not true. Completeness. Cantor's intersection theorem. R is a complete metric space. Q is not complete. Continuous mappings, sequential criterion of continuity. Uniform continuity. Compactness, Sequential compactness, Heine- Borel theorem in R. Finite intersection property, continuous functions on compact sets.	Metric Space	 S. Kumaresan, Topology of Metric Spaces P. K. Jain and K. Ahmad, Metric Spaces 	15	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems	AB

UNIT I Concept of connectedness and some examples of connected metric space, connected subsets of R, C. Contraction mappings, Banach Fixed point Theorem and its application to ordinary differential equations.	Metric Space	 S. Kumaresan, Topology of Metric Spaces P. K. Jain and K. Ahmad, Metric Spaces 	10	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems	AB
UNIT II Stereographic projection. Regions in the complex plane. Limits, limits involving the point at infinity. Continuity of functions of complex variable. Derivatives, differentiation formulas, Cauchy- Riemann equations, sufficient conditions for differentiability. Analytic functions, exponential function, logarithmic function, trigonometric functions, hyperbolic functions. M"obius transformation.	Complex Analysis	 S. Kumaresan, Topology of Metric Spaces P. K. Jain and K. Ahmad, Metric Spaces 	18	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems	PL
UNIT II Power series : Cauchy-Hadamard theorem. Determination of radius of convergence. Uniform and absolute convergence of power series. Analytic functions represented by power series. Uniqueness of power series. Contours, complex integration along a contour and its examples, upper bounds for moduli of contour integrals. Cauchy- Goursat theorem (statement only) and its consequences, Cauchy integral formula.	Complex Analysis	 S. Kumaresan, Topology of Metric Spaces P. K. Jain and K. Ahmad, Metric Spaces 	17	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems	PL

Planned					mentation		
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s		
SEM VI(H) CBCS CC-14							
	Nume	rical Methods					
					1		
UNIT I	Numeric	1) Atkinson, K. E., An	5	Chalk	MH		
Demuscontation of wall numbers Mashing	al	Introduction to		Blackboard,			
Numbers - floating point and fixed point. Sources	Analysis	Numerical Analysis,		Class-Notes			
of Errors, Rounding of numbers, significant				&			
digits and Error Propagation in machine		2) M.K. Jain, S.R.K.		Hand-written			
arithmetic operations. Numerical Algorithms -		Iyengar and R.K.		theory notes			
stability and convergence		Jain, Numerical		with problems,			
		Methods for Scientific					
		and Engineering					

UNIT II Approximation : Classes of approximating functions, Types of approximations- polynomial approximation, The Weierstrass polynomial approximation theorem (statement only). Interpolation : Lagrange and Newton's methods. Error bounds. Finite difference operators. Newton (Gregory) forward and backward difference interpolation. Central Interpolation : Stirling's and Bessel's formulas. Different interpolation zones, Error estimation. Hermite interpolation.	Numeric al Analysis	 Atkinson, K. E., An Introduction to Numerical Analysis, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering 	15	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems,	MH
UNIT III Numerical differentiation : Methods based on interpolations, methods based on finite differences. Numerical Integration : Newton Cotes formula, Trapezoidal rule, Simpson's 3 -rd rule, Simpson's 8 -th rule, Weddle's rule, Boole's Rule, midpoint rule. Composite trapezoidal rule, composite Simpson's 1 -rd rule, composite Weddle's rule. Gaussian quadrature formula.	Numeric al Analysis	 Atkinson, K. E., An Introduction to Numerical Analysis, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering 	10	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems,	MH

UNIT IV Transcendental and polynomial equations : Bisection method, Secant method, Regula-falsi method, fixed point iteration, Newton-Raphson method. Condition of convergence (if any), Order of convergence, Rate of convergence of these methods. Modified Newton-Raphson method for multiple roots, Complex roots of an algebraic equation by Newton-Raphson method. Numerical solution of system of nonlinear equations - Newton's method.	Numeric al Analysis	 Atkinson, K. E., An Introduction to Numerical Analysis, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering 	10	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems,	МН
UNIT V System of linear algebraic equations : Direct methods : Gaussian elimination and Gauss Jordan methods, Pivoting strategies. Iterative methods : Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU decomposition method (Crout's LU decomposition method). Matrix inversion : Gaussian elimination and LU decomposition method (Crout's LU decomposition method). Matrix inversion : Gaussian elimination and LU decomposition method (Crout's LU decomposition method) (operational counts). • The algebraic eigenvalue problem : Power method.	Numeric al Analysis	 Atkinson, K. E., An Introduction to Numerical Analysis, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering 	10	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems,	МН

UNIT VI	Numeric	1) Atkinson, K. E., An	5	Chalk	MH
Ordinary differential equations : Single-step difference equation methods- error, convergence.	al	Introduction to		Blackboard,	
	Analysis	Numerical Analysis,		Class-Notes	
	· ·			&	
(Picard), Euler's method, the modified Euler		2) M.K. Jain, S.R.K.		Hand-written	
method, Runge-Kutta methods of orders two and		Iyengar and R.K.		theory notes	
four.		Jain, Numerical		with problems,	
		Methods for Scientific		-	
		and Engineering			

Planned				After Imple	nentation
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s
SEM	VI(H) C	BCS CC-14 Pract	tical		
	Numeric	al Methods Lab			
 Calculate the sum 1 + 1/2 + 1/3 + · · · + 1/N 2. Enter 100 integers into an array and sort them in an ascending order. 3.Solution of transcendental and algebraic equations by i) Bisection method ii) Newton Raphson method (Simple root, multiple roots, complex roots). iii) Secant method. iv) Regula Falsi method. 	Numeric al Methods Lab	 Atkinson, K. E., An Introduction to Numerical Analysis, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering 	10	Computer Lab, Chalk and Talk, ICT Classroom	DP
4. Solution of system of linear equations i) LU decomposition method ii) Gaussian elimination method iii) Gauss-Jacobi method iv) Gauss-Seidel method	Numeric al Methods Lab	 Atkinson, K. E., An Introduction to Numerical Analysis, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical 	15	Computer Lab, Chalk and Talk, ICT Classroom	DP

5. Interpolation i) Lagrange Interpolation ii) Newton's forward, backward and divided difference interpolations		Methods for Scientific and Engineering			
 6. Numerical Integration i) Trapezoidal Rule ii) Simpson's one third rule iii) Weddle's Rule iv) Gauss Quadrature 7. Method of finding Eigenvalue by Power method (up to 4 × 4) 	Numeric al Methods Lab	 Atkinson, K. E., An Introduction to Numerical Analysis, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering 	15	Computer Lab, Chalk and Talk, ICT Classroom	DP
 8.Fitting a Polynomial Function (up to third degree) 9. Solution of ordinary differential equations i) Euler method ii) Modified Euler method iii) Runge Kutta method (order 4) iv) The method of successive approximations (Picard) 	Numeric al Methods Lab	 Atkinson, K. E., An Introduction to Numerical Analysis, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering 	10	Computer Lab, Chalk and Talk, ICT Classroom	DP

Planned				After Implei	nentation				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s				
SEM VI(H) CBCS DSE-A(2)									
	Mathem	atical Modelling							
	1								
UNIT I Power series solution of Bessel's equation and Legendre's equation, Laplace transform and inverse transform, application to initial value problem up to second order.	Mathem atical Modellin g	 TynMyint-U and Lokenath Debnath, Linear Partial Differential Equation for Scientists and Engineers Frank R. Giordano, Maurice D. Weir and William P. Fox, A First Course in Mathematical Modeling 	20	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems,	МН				

UNIT II	Mathem	1) TynMyint-U and	45	Chalk	MH
	atical	Lokenath Debnath,		Blackboard,	
Monte Carlo simulation modelling: simulating	Modellin	Linear Partial		Class-Notes	
deterministic denavior (area under a curve, volume under a surface) generating random	g	Differential Equation		&	
numbers: middle square method, linear	0	for Scientists and		Hand-written	
congruence, queuing models: harbor system,		Engineers		theory notes	
morning rush hour, Overview of optimization				with problems,	
geometric solution algebraic solution, simplex		2) Frank R.		_	
method, sensitivity analysis		Giordano, Maurice D.			
		Weir and William P.			
		Fox, A First Course in			
		Mathematical			
		Modeling			

 Graphical demonstration (Teaching aid **) [10 classes] Plotting of Legendre polynomial for n = 1 to 5 in the interval [0,1]. Verifying graphically that all the roots of Pn(x) lie in the interval [0,1]. Automatic computation of coefficients in the series solution near ordinary points. Plotting of the Bessel's function of first kind of order 0 to 3. Automating the Frobenius Series Method. Random number generation and then use it for one of the following (a) Simulate area under a curve (b) Simulate volume under a surface. Programming of either one of the queuing model (a) Single server queue (e.g. Harbor system) (b) Multiple server queue (e.g. Rush hour). Programming of the Simplex method for 2/3 variables. 	Mathem atical Modellin g	 TynMyint-U and Lokenath Debnath, Linear Partial Differential Equation for Scientists and Engineers Frank R. Giordano, Maurice D. Weir and William P. Fox, A First Course in Mathematical Modeling 	10	Computer Lab, Chalk and Talk, ICT Classroom	МН
--	-----------------------------------	--	----	---	----

Planned					mentation
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s
SE	M VI(H)	CBCS DSE-B(2))		
	Advan	ced Mechanics			
UNIT I Degrees of freedom, reactions due to constraints. D' Alembert's principle; Lagranges first kind equations; Generalized coordinates; Generalized forces; Lagrangian; Second kind Lagrange's equations of motion; cyclic coordinates; velocity dependent potential; Principle of energy; Rayleigh's dissipation function.	Mechani cs	 H. Goldstein, Classical Mechanics, Narosa Publ., New Delhi, 1998 E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspectives 	20	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems,	BS
UNIT II Action Integral; Hamilton's principle; Lagrange's equations by variational methods; Hamilton's principle for non-holonomic system; Symmetry properties and conservation laws; Noether's theorem. Canonically conjugate coordinates and momenta; Legendre transformation; Routhian approach; Hamiltonian.	Mechani cs	 H. Goldstein, Classical Mechanics, Narosa Publ., New Delhi, 1998 E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspectives 	20	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems,	BS

	Mechani	1) H. Goldstein,	15	Chalk	BS
	cs	Classical Mechanics,		Blackboard,	
Hamilton's equations from variational principle;		Narosa Publ., New		Class-Notes	
Poincare-Cartan integral invariant; Principle of stationary action: Fermat's principle:		Delhi, 1998		&	
stationary action, rerinat's principie,				Hand-written	
		2) E.C.G. Sudarshan		theory notes	
		and N. Mukunda,		with problems,	
		Classical Dynamics: A			
		Modern Perspectives			
UNIT IV	Mechani	1) H. Goldstein,	20	Chalk	BS
	cs	Classical Mechanics,		Blackboard,	
Canonical transformation; Generating function;		Narosa Publ., New		Class-Notes	
angle vari- ables. Hamilton-Jacobi's equation.		Delhi, 1998		&	
Hamilton's principal function; Hamilton's				Hand-written	
characteristics function; Li- ouville's theorem.		2) E.C.G. Sudarshan		theory notes	
		and N. Mukunda,		with problems,	
		Classical Dynamics: A			
		Modern Perspectives			

Lesson Plan Even Semester Mathematics (MDC/General) CCF + CBCS

Plan	nned			After Imple	mentation
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s
SEM II (MDC) MATH	I-MD-CC Basic	C 2-2-Th (same as] Algebra	MATH-MD	-MC 2-4-Th)	

Group A Polar representation of complex numbers, <i>nth</i> roots of unity, De Moivre's theorem for rational indices and its applications. Exponential, logarithmic, trigonometric, and hyperbolic functions of complex variable.	Complex Analysis	2	Chalk and Talk, Notes	PL
Group ATheory of equations: Relation between roots and coefficients, transformation of equation, Descartes rule of signs, Application of Sturm's theorem, cubic equation (solution by Cardan's method), and biquadratic equation (solution by Ferrari's method).Inequalities: The inequality involving $AM \ge GM \ge$ HM, Cauchy-Schwartz inequality.	Classical Algebra	6	Chalk and Talk, Notes, tutorial, class work	PL

Group B				AB
Relation: equivalence relation, equivalence classes & partition, partial order relation, poset, linear order relation. Mapping: composition of mappings, relation between composition of mappings and various set theoretic operations. Meaning and properties of $f-1$ (B), for any mapping $f : X \to Y$ and $B \subseteq Y$.		5	Chalk and Talk, Notes, tutorial, class work	
Group B Well-ordering property of positive integers, Principles of Mathematical induction, equivalence of Wellordering property and Principles of Mathematical induction (statement only), division algorithm, divisibility and Euclidean algorithm. Prime numbers and their properties, Euclid's theorem. Congruence relation between integers. Fundamental Theorem of Arithmetic. Chinese remainder theorem. Arithmetic functions, some arithmetic functions such as ϕ , τ , σ and their properties.		6	Chalk and Talk, Notes, tutorial, class work	BS

Group C Systems of linear equations, homogeneous and non-homogeneous systems. Existence and Uniqueness of solution. The matrix equation Ax = b, row reduction and echelon forms, uniqueness of reduced echelon form. Rank of a matrix and characterization of invertible matrices, Pivot positions, basic and free variables, parametric description of the solution set. Existence and uniqueness theorem.	Linear Algebra	Gilbert Strang; Introduction to Linear Algebra (5th Edition)	6	Chalk and Talk, Notes, tutorial, class work	AB
Group C Vectors in R^n , algebraic and geometric properties of the vectors. Vector form of a linear system and the column picture. Existence of solutions and linear combination of vectors. Geometry of linear combination and	Linear Algebra	Gilbert Strang; Introduction to Linear Algebra (5th Edition)	6	Chalk and Talk, Notes, tutorial, class work	МН
subsets spanned by some vectors. Uniqueness of solution and linear independence of vectors. Algebraic and geometric characterizations of linearly independent subsets.		,			

Plar	nned			After Imple	mentation
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s
SEM II (1	MDC)	MATH-MD-SEC	2-2-Th	•	
,	Artific	ial Intelligence			

Unit 1: Introduction to Artificial Intelligence • Definition and scope of AI • Historical overview and key milestones • Differentiating AI from human intelligence	Artificia l Intellige nce		2	Chalk and Talk, Notes, Hands on Experience, Research Work, Term Paper Submission	DP
 Unit 2: AI Subfields and Technologies Machine learning: Supervised, unsupervised, and reinforcement learning Deep learning and neural networks Natural language processing (NLP) and computer vision 	Artificia l Intellige nce	Russell / Norvig , ARTIFICIAL INTELLIGENCE: A MODERN APPROACH	3	Chalk and Talk, Notes, Hands on Experience, Research Work, Term Paper Submission	DP

 Unit 3: Applications of AI AI in healthcare: Diagnosis, treatment, and medical imaging AI in finance: Fraud detection, algorithmic trading, and risk assessment AI in transportation: Autonomous vehicles and traffic optimization AI in customer service and chatbots AI in education: Personalized learning and 	Artificia l Intellige nce	Russell / Norvig , ARTIFICIAL INTELLIGENCE: A MODERN APPROACH	6	Chalk and Talk, Notes, Hands on Experience, Research Work, Term Paper Submission	DP
intelligent tutoring systems					
Unit 4: Ethical and Social Implications of AI	Artificia l	Russell / Norvig , ARTIFICIAL		Chalk and Talk, Notes,	DP
• Bias and fairness in AI systems	Intellige	INTELLIGENCE: A		Hands on	
• Privacy and data protection concerns	nce	MODERN APPROACH	6	Experience, Research Work, Term	
• Impact of AI on employment and the workforce				Paper Submission	
• AI and social inequality				Submission	

 Unit 5: Other Important Issues Ethical guidelines and responsible AI practices AI and Innovation Emerging trends and future directions in AI AI and creativity: Generative models and artistic 	Artificia l Intellige nce	Russell / Norvig , ARTIFICIAL INTELLIGENCE: A MODERN APPROACH	6	Chalk and Talk, Notes, Hands on Experience, Research Work, Term Paper Submission	DP
applications					

Sem IV MDC Syllabus is not out yet

Planned				After Implementation				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s			
SEM VI(G) CBCS DSE-B								
	Advai	nced Calculus						
Concept of Point-wise and Uniform convergence of sequence of functions and series of functions with special reference of Power Series. Statement of Weierstrass M-Test for Uniform convergence of sequence of functions and of series of functions. Simple applications. Statement of important properties like boundedness, continuity, differentiability and integrability of the limit function of uniformly convergent sequence of functions and of the sum function of uniformly convergent series of functions.	Advance d Calculus	 David Widder; Advance Calculus Angus E. Taylor and W. Robert Mann; Advanced Calculus 	20	Chalk Blackboard Notes	BS			
Determination of Radius of convergence of Power Series. Statement of properties of continuity of sum function power series. Term by term integration and Term by	Advance d Calculus	 David Widder; Advance Calculus Angus E. Taylor and W. Robert Mann; Advanced Calculus 	40	Chalk Blackboard Notes	AB			

term differentiation of Power Series. Statements of			
Abel's Theorems on Power Series. Convergence of			
Power Series.			
Expansions of elementary functions such as ex, sin			
x, log(1+x), (1+x)n. Simple problems.			
Periodic Fourier series on (π, π) : Periodic			
function. Determination of Fourier coefficients.			
Statement of			
Dirichlet's conditions of convergence and			
statement of the theorem on convergence of			
Fourier Sine and Cosine			
series.			
Laplace Transform and its application to ordinary			
differential equation. Laplace Transform and			
Inverse Laplace			
Transform. Statement of Existence theorem.			
Elementary properties of Laplace Transform and			
its Inverse.			
Application to the solution of ordinary differential			
equation of second order with constant coefficients			

Planned				After Implementation			
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks Comment s		
SEM VI(G) CBCS SEC-B							
Boolean Algebra							
Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle, maximal and minimal elements, lattices as ordered sets, complete lattices, lattices as algebraic structures, sublattices, products and homomorphisms. Definition, examples and properties of modular and distributive lattices, Boolean algebras. Boolean polynomials, minimal forms of Boolean polynomials, Quinn-McCluskey method, Karnaugh dia- grams, switching circuits and minimization of switching circuits using Boolean algebra.	Boolean Algebra	 A. Davey and H. A. Priestley, Introduction to Lattices and Order Rudolf Lidl and Gu"nter Pilz, Applied Abstract Algebra 	10	Chalk Blackboard Notes	PL		