AY 2024-205

Sem- I

LESSON PLAN

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

Paper Name & Code: Basic Physics I DSCC 1(Major)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	(a) Mather	natical Physics			
	a) Units & Dimension , Plotting functions	Mathematical	1		
1. Preliminaries	b) Limits And continuity	Methods in the	1	Chalk & talk	
	c) Taylor and Binomial series	Physical Sciences	1		
(GP)	d) Calculus, maxima. Minima	by M.L. Boas	1		
	e) Partial derivatives		1		
2. Ordinary Differential equations	a) First order	Mathematical Methods in the Physical Sciences	1	Chalk & talk	
(SDG)	b) Second order	by M.L. Boas	1		
3 Vectors	a) Vector products	Vector Analysis	2	Chalk & talk	
(SC)	b) Vector differentiations, gradient, curl, divergence	outline series) By Spiegel	3		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

Paper Name & Code: Basic Physics I DSCC 1(Major)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	c) Divergence and Stoke's theorem		2	Chalk & talk	
 Curvilinear Coordinates (SC) 	 a) Plane polar, spherical, cylindrical coordinates, vectors, velocity and acceleration 		5		
	b) Vector integrals		1		
	Total		20		
	(B) Class	ical Mechanics	1	<u> </u>	
1. Review of Newton's Laws	a) Inertial frames, Galilean transformation	Classical	1	Chalk & talk	
(AS)	 b) Newton's laws conservation of linear momentum 	Mechanics By A.B. Gupta	1		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

Paper Name & Code: Basic Physics I DSCC 1(Major)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	c) Rotational motion		2	Chalk & talk	
	d) Problems		2		
2.Work Kinetic	a) Conservative and non conservative forces, potential		2		
energy Theorem (AS)	c) potential energy curves and Stability		1		
	d) Small oscillation		1		
3. Dynamics of a system	a) COM and reduced mass	Classical Mechanics By	2	Chalk & talk	
of particles(GP)	b) Momentum and energy of a system of particles	A.B. Gupta	2		
	a) Laws of Gravitation		1		
4. Central forces (GP)	b) Gravitational Potential and Intensity		2		
	c) Equation of motion in Central forces		3		
	d) Motion under inverse square law		2		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

Paper Name & Code: Basic Physics I DSCC 1(Major)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
5. Scattering (KB)	a) Two body collision and scattering		2	Chalk & talk	
	a) Kinematics of moving fluids, equation of continuity		2		
6. Mechanics of Continuum	b) Streamline and turbulent flow	Classical Mechanics By	1		
(КВ)	c) Stokes law, Euler equation,	A.B. Gupta	1		
	d) Bernoulli's Theorem & application		2		
	TOTAL		30		
TOTAL (A+B)			50		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

A fulfilled	
Unit / Group / Module / Article Topics Reference Books No of Lecture Content Remark Delivery Planned Technique	·ks / ents
a) Plotting 2D graphs: both functions and data files. Changing plot range and plot styles: the options- with points (w p), with dots (w d), with lines (w 1), with lines points (w lp), linetype (lt), linewidth (lw). Using the set command for samples, xrange, yrange, xlabel, ylabel, title etc. Theusing option 2 1. Introduction to Graph Plotting (2D only, using GNUPLOT) b) User defined functions [Including the use of ternary operator for piece-wise defined functions.] 1) Scientific Computer Practical (SC) c) Fitting data files using gnuplot. 3 3 (SC) c) Fitting data files using gnuplot. 3 d) Polar and parametric plots 3 3 e) Conditional Plotting of data from file using \$, &&, operators. (Graphs to be saved without using GUI) 3	

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

Paper Name & Code: Introduction to Computer Programming and Graph Plotting (Pr) SEC 1

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	a) Introduction Using the python interpreter as a calculator Variable and data types (int, float, complex, list, tuple, set, string, the type () function) Basic mathematical operations Compound statements in python Conditionals (if, elif, else) Loops (for, while)		3		
2. Introduction to programming in python (Version 3): (SDG)	b) User defined functions def: (return statement, default values for arguments, keywordarguments), lambda function. Importing modules with math and cmath as examples, Using help and dir command to use the inbuilt manual, Basic idea of namespaces- local and global Python scripts, I/O operations (including opening and writing to files)	1) Scientific Computing in Python by Abhijit Kar Gupta	3	Computer Practical, Study material	
	b) The python data types List: defining lists, reading and changing elements from lists, slicing (with discussion on the difference between ll=mm and ll=mm[:], concatenation, list comprehension. built in functions involving lists: range(),		4		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	<pre>len(), sum(), min(), max() - list methods: append(), extend(), count(), index(), sort(), insert(), pop(), remove(), reverse()</pre>				
	Tuples: Contrast and compare with lists, packing/unpacking using tuples (including a,b=b,a to swap variables) • Sets : set methods: update(), pop(), remove(), Set Theoretic operations: union, intersection, difference and symmetric difference of two sets.		4		
	Strings: defining strings, the use of single, double or triple quotes as string delimiters, len(),indexing, slicing, string concatenation, some string methods: strip(), split(), join(), find(), count(), replace(), string formatting in python (using the % operator	 Scientific Computing in Python by Abhijit Kar Gupta 	2	Computer	
3. Problems and Applications (SDG)	Finding factors of an integer Determining whether an integer is prime or not. Finding out prime number greater than or lesser than a given value. Finding out all prime numbers within a given range	1) Scientific Computing in Python by Abhijit Kar Gupta	10	- Computer Practical	

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Root finding for a single variable (basic theory and algorithm) using Newton-Raphson andBisection method Sorting of lists (algorithm, flowchart and code) using Bubble or Selection sort Sum of series correct up to given decimal places (Sine, Cosine, Exponential etc.)		8		
	Simulation of motion of a particle in 1D under a given force $F(x, t, v)$ with given initial condition and plotting (x, t) , (x, v) , (t, v) . (Output to be saved in data files and Gnuplot to be used to plot graphs), using Euler's method only.		6	Computer Practical	
	Matrix Addition, Multiplication and Transpose using List Comprehension.		6		
		Total	60		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

Katilakali Diswas (KD)

Paper Name & Code: Sem-I Basic Physics-I Minor-1

	Planned									
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments					
	(a) Mathematical Physics									
	a) Units & Dimension , Plotting functions	Mathematical	1							
1. Preliminaries	b) Limits And continuity	Methods in the	1	Chalk & talk						
	c) Taylor and Binomial series	Physical Sciences	1							
(G r)	e) Partial derivatives	by WI.L. Doas	1	-						
2. Ordinary Differential equations	a) First order	Mathematical Methods in the Physical Sciences	1	Chalk & talk						
(SDG)	b) Second order	by M.L. Boas	1							
3 Vectors	a) Vector products	Vector Analysis	2	Chalk & talk						
(SDG)	b) Vector differentiations, gradient, curl, divergence	outline series) By Spiegel	3							

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

Paper Name & Code: Sem-I Basic Physics-I Minor-1

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	c) Divergence and Stoke's theorem		2	Chalk & talk	
 Curvilinear Coordinates (SDG) 	 a) Plane polar, spherical, cylindrical coordinates, vectors, velocity and acceleration 		5		
-	b) Vector integrals	-	1		
	Total		20		
	(B) Class	ical Mechanics	1	<u> </u>	
 Review of Newton's Laws 	a) Inertial frames, Galilean transformation	Classical	1	Chalk & talk	
(AS)	 b) Newton's laws conservation of linear momentum 	Mechanics By A.B. Gupta	1		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

Paper Name & Code: Sem-I Basic Physics-I Minor-1

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	c) Rotational motion		2	Chalk & talk	
	d) Problems		2		
2.Work Kinetic	a) Conservative and non conservative forces, potential		2		
energy Theorem	c) potential energy curves and Stability		1		
	d) Small oscillation		1		
3. Dynamics of a system	a) COM and reduced mass	Classical Mechanics By	2	Chalk & talk	
of particles(GP)	b) Momentum and energy of a system of particles	A.B. Gupta	2		
	a) Laws of Gravitation		1		
4. Central forces (GP)	b) Gravitational Potential and Intensity		2		
× ,	c) Equation of motion in Central forces		3		
	d) Motion under inverse square law		2		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

Paper Name & Code: Sem-I Basic Physics-I Minor-1

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
5. Scattering (KB)	a) Two body collision and scattering		2	Chalk & talk	
	a) Kinematics of moving fluids, equation of continuity	Classical Mechanics By	2		
6. Mechanics of Continuum	b) Streamline and turbulent flow		1		
	c) Stokes law, Euler equation,	A.B. Gupta	1		
	d) Bernoulli's Theorem & application		2		
	TOTAL		30		
TOTAL (A+B)			50		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Introduction to Graph Plotting (2D	a) Plotting 2D graphs: both functions and data files. Changing plot range and plot styles: the options- with points (w p), with dots (w d), with lines (w l), with lines points (w lp), linetype (lt),linewidth (lw). Using the set command for samples, xrange, yrange, xlabel ,ylabel, title etc. Theusing option	1) Scientific	2	rechnique	
only, using GNUPLOT)	of ternary operator for piece-wise defined functions.]	Computing in Python by Abhijit Kar Gupta	3	Computer Practical	
(SC)	 c) Fitting data files using gnuplot. d) Polar and parametric plots e) Conditional Plotting of data from file using \$, &&, operators. (Graphs to be saved withoutusing GUI) 		<u>3</u> 3 3		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	a) Introduction Using the python interpreter as a calculator Variable and data types (int, float, complex, list, tuple, set, string, the type () function) Basic mathematical operations Compound statements in python Conditionals (if, elif, else) Loops (for, while)		3		
2. Introduction to programming in python (Version 3): (SDG)	b) User defined functions def: (return statement, default values for arguments, keywordarguments), lambda function. Importing modules with math and cmath as examples, Using help and dir command to use the inbuilt manual, Basic idea of namespaces- local and global Python scripts, I/O operations (including opening and writing to files)	1) Scientific Computing in Python by Abhijit Kar Gupta	3	Computer Practical, Study material	
	b) The python data types List: defining lists, reading and changing elements from lists, slicing (with discussion on the difference between ll=mm and ll=mm[:], concatenation, list comprehension. built in functions involving lists: range(),		4		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	<pre>len(), sum(), min(), max() - list methods: append(), extend(), count(), index(), sort(), insert(), pop(), remove(), reverse()</pre>				
	Tuples: Contrast and compare with lists, packing/unpacking using tuples (including a,b=b,a to swap variables) • Sets : set methods: update(), pop(), remove(), Set Theoretic operations: union, intersection, difference and symmetric difference of two sets.		4		
	Strings: defining strings, the use of single, double or triple quotes as string delimiters, len(),indexing, slicing, string concatenation, some string methods: strip(), split(), join(), find(), count(), replace(), string formatting in python (using the % operator	 Scientific Computing in Python by Abhijit Kar Gupta 	2	Computer	
3. Problems and Applications (SDG)	Finding factors of an integer Determining whether an integer is prime or not. Finding out prime number greater than or lesser than a given value. Finding out all prime numbers within a given range	1) Scientific Computing in Python by Abhijit Kar Gupta	10	- Computer Practical	

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Root finding for a single variable (basic theory and algorithm) using Newton-Raphson andBisection method Sorting of lists (algorithm, flowchart and code) using Bubble or Selection sort Sum of series correct up to given decimal places (Sine, Cosine, Exponential etc.)		8		
	Simulation of motion of a particle in 1D under a given force $F(x, t, v)$ with given initial condition and plotting (x, t) , (x, v) , (t, v) . (Output to be saved in data files and Gnuplot to be used to plot graphs), using Euler's method only.		6	Computer Practical	
	Matrix Addition, Multiplication and Transpose using List Comprehension.		6		
		Total	60		

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Role of proper reasoning and experiments, with examples. Inductive and deductive logic.	1. Six Easy Pieces –	2		
1. Nature of Science	The character of physical laws, including universality.	2. The first three	2	Chalk and Talk	
	Difference between science and pseudo science	Weinberg	1		
	The Copernican revolution, Kepler's laws and the Solar system, Galileo and birth of Telescopic Astronomy,	1. Six Easy Pieces –	4	Chalk and Talk	
2. Universe	Modern observations: Stars and galaxies, Life cycle of stars. Birth of the Universe,	Richard P. Feynman2. The first three minutes	3		
	Big Bang and Hubble expansion, Dark matter and dark energy.	Steven Weinberg	3		
3. Matter	Atoms and molecules: The physical basis of the Periodic Table	1. The character of physical laws –	2	Chalk and Talk	

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Heat and Thermodynamics: Basic idea about the kinetic theory of gases; Distinction between ideal and real gases; The three laws of thermodynamics. Concept of Entropy. Radioactivity: Alpha, beta &	Richard P. Feynman 2. Introduction to Astronomy: From Darkness to Blazing Glory – J. W Scott, JAS Educational Publications	6		
	Structure of the atom: Electron, Nucleus: proton and neutron. Mention of the Standard Model of particles & interactions.		4	Chalk and Talk	
4. Forces	Laws of falling bodies, Inertia, Gravitation, Electricity and Magnetism, Light and its dual property.	 Six Easy Pieces – Richard P. Feynman The first three minutes 	5	Chalk and Talk	

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	The microscopic world of Quantum Mechanics.	– Steven Weinberg	5		
	Special and General Theory of Relativity (brief and qualitative ideas only)		5	Chalk and Talk	
	Total Lectures		45		

Sem - III

LESSON PLAN

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Waves and Optics, DSC-3

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Oscillations	Differential equation of simple harmonic oscillation and its solution. Kinetic energy, potential energy, total energy and their time average values.	1) Waves and Oscillations,	2	Chalk & talk,	
(SC)	Damped and forced oscillations: Transient and steady states, resonance, sharpness of resonance; power dissipation and Quality Factor.	Brij Lal & N Subrahmanyam Vikas Publishing2) Vibrations, Waves and	2	Assignment	
	Superposition of two collinear Harmonic oscillations having equal frequencies and different frequencies (beats).	Acoustics by Dr. D. Chattopadhyay & Dr. P. C. Rakshit	1		
2. Superposition of Harmonic Oscillations (SC)	Superposition of two Perpendicular Harmonic Oscillations for phase difference $\delta = 0, \pi, 2\pi$: Graphical and analytical methods, Lissajous' figures with equal and unequal frequency and their uses.	3) A Treatsie on Oscillations, Waves And Acoustics by Dr. D. Chattopadhyay	2	Chalk & talk, Assignment	
3. Wave motion (SC)	Plane and spherical waves. Longitudinal and transverse waves. Plane progressive (travelling) waves. Wave equation for travelling waves. Particle and wave velocities.		2	Chalk & talk	

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Waves and Optics, DSC-3

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Velocity of transverse vibrations of stretched strings; standing (stationary) waves in a string: fixed and free ends (analytical treatment).	1) Waves and Oscillations, Brij Lal & N Subrahmanyam Vikas Publishing	2		
4. Superposition of harmonic Waves	Changes with respect to position and time. Energy of vibrating string. Transfer of energy.	2) Vibrations, Waves and Acoustics by Dr. D. Chattopadhyay & Dr. P. C.	2	Chalk & talk	
(SC)	Normal modes of stretched strings. Plucked and struck strings, Superposition of N harmonic waves. Phase and group velocities.	Rakshit 3) A Treatsie on Oscillations, Waves And Acoustics by Dr.	2		
	Numerical problems	D. Chattopadhyay	1		
5. Fermat's Principle (AS)	Fermat's principle, laws of reflection and refraction at a plane and curved surface.	1) Wave and Optics by A. B.	2	Chalk & talk	
6. Interference	Huygens principle, division of amplitude and wavefront. Young's double slit experiment. Fresnel's Biprism.	2) Optics by Ajoy Ghatak	2		
(AS)	Phase change on reflection: Stokes' treatment. Interference in thin films: parallel and wedge shaped films.	3) Optics by B. Ghosh	3		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Waves and Optics, DSC-3

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Fringes of equal inclination (Haidinger fringes); Fringes of equal thickness (Fizeau fringes). Newton's Rings: Measurement of wavelength and refractive index.		3		
	Michelson interferometer (no detailed theory required), Fabry Perot interferometer. temporal and spatial coherence.		3		
	Numerical problems.		1		
	Fraunhofer diffraction: Single slit, double slit and diffraction grating. Resolving power of grating.	1) Wave and Optics by A. B.	4		
7. Diffraction	Rayleigh criterion for resolution. Circular aperture (qualitative discussion only).	If wave and Optics by A. B. lar Gupta 2) Optics by Ajoy Ghatak od of 3) Optics by B. Ghosh	2	Chalk & talk	
(AS)	Fresnel diffraction: Fresnel's half-period zones for plane wave. Explanation of rectilinear propagation of light. Theory of a Zone Plate: Multiple foci of a Zone Plate.		3		
	Class test		1		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Waves and Optics, DSC-3

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Description of linear, circular and elliptical polarization.		2		
	Propagation of electromagnetic waves in birefringent medium, polarization in uniaxial crystals. Double refraction. Polarization by double refraction. Nicol prism. Ordinary and extraordinary refractive indices.	1) Optics by E. Hecht	2		
8. Polarization (SDG)	Phase Retardation plates: Quarter-wave and Half-wave plates. Production and analysis of polarized light.	 2) Optics by Ajoy Ghatak 3) Introduction to Optics by E. L. Pedrotti 	2	Chalk & talk, PPT, Assignment	
	Rotatory polarization, Biot's laws for rotatory polarization. Fresnel's theory of optical rotation. Calculation of angle of rotation. Specific rotation.	E. E. I curotti	2	_	
	Numerical problems and Quiz		1		
	Class test.		1		
		Total	50		

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP), Dr. Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Convergence of power series. Idea of interval convergence.		1		
1. Convergence of infinite series	Different convergence tests of power series: D'Alembert's ratio test, Cauchy's root test, Integral test		2	Chalk & talk, PPT, Assignment	
(KB)	Alternating series test. Absolute and conditional convergence.	1) Mathematical Methods in the Physical Science by M. L. Boas	1	_	
	Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients.	 2) Mathematical Physics by H. K. Dass 3) Mathematical 	2		
2. Fourier Series (KB)	Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions.	Methods for Physics and Engineering by K. F Riley, Michael Paul Hobson, and Stephen John Bence	2	Chalk & talk, PPT, Assignment	
	Applications. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity.		1		
	Class test and quiz.		1		

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP), Dr. Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

Paper Name & Code: Mathematical Physics I, DSC-4

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Fourier Integral theorem. Fourier Transform (FT) with examples. FT of trigonometric, Gaussian, finite wave train, and other functions.	1) Mathematical Methods in the Physical Science by M. L. Boas	2	-	
3. Fourier Transform	Inverse Fourier transform, Properties of FT (translation, change of scale, complex conjugation etc.). Parseval's identity.	2) Mathematical Physics by H. K. Dass	2	Chalk & talk, PPT, Assignment	
(SDG)	Applications of FT in single slit, double slit, rectangular aperture and N-slit grating.	3) Mathematical Methods for Physics and Engineering by	1		
	Class Test	K. F Riley, Michael Paul Hobson, and Stephen John Bence	1		
4. Partial	Solution to partial differential equations using separation of variables: Solutions of Laplace's equation in problems with Cartesian and spherically symmetric cases only.	1) Mathematical Physics by H. K.	4		
Equations (GP)	Wave equation and its solution for vibrational modes of a stretched string, Diffusion Equation in one dimension.	Dass 2) Mathematical Methods by Potter and Goldberg	3	Chalk & talk	
	Numerical and quiz		1		

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP), Dr. Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Probability for discrete events, and combined probability for uncorrelated events. Mean and variance.	1) Mathematical Methods in the	3		
5. Introduction to Probability (GP)	Independent random variables: Sample space and Probability distribution functions. Binomial, Gaussian, and Poisson distribution with examples.	Physical Science by M. L. Boas 2) Mathematical Physics by H. K.	3	Chalk & talk	
One dimensional Random walk.	Dass	1			
	Class Test		1		
	Definition of Dirac δ -function. Delta function as limit of different delta-sequence functions. Properties of δ -function: $\delta(-x)$, $\delta(f(x))$.	1) Mathematical Methods for Physics	2		
6. Dirac <i>ð</i> -function (GP)	Derivative of the step function. Fourier transform of δ -function. Two-and three-dimensional δ -function. Fourier transform of three-dimensional Coulomb potential, evaluation of $\nabla^2\left(\frac{1}{r}\right)$.	Methods for Physics and Engineering by K. F Riley, Michael Paul Hobson, and Stephen John Bence	2	Chalk & talk	

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP), Dr. Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
7. Some special	Beta and Gamma functions and relation between them. Expression of integrals in terms of Gamma functions.	1) Mathematical Physics by H. K.	3		
(GP)	Error function (probability integral). Numerical problems.	Dass	1	Chalk & talk	
	Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors: errors in normal distribution as quadrature (uncorrelated).		1		
8. Numerical Analysis I	<i>Numerical solution of Algebraic equation</i> : Bisection method, Newton-Raphson method.	1) Numerical Methods, Arun Kr Jalan, Utpal Sarkar,	1	- Chalk & talk PPT	
(KB)	<i>Interpolation:</i> Finite difference operators, Newton (Gregory) forward and backward interpolation, Lagrange's Interpolation.	2015, University Press	2		
	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule.		1		

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP), Dr. Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	<i>System of linear algebraic equations:</i> Direct methods: Gaussian elimination; Iterative methods: Gauss-Jacobi method, Gauss-Seidel method. Some qualitative discussion on matrix inversion technique.		2		
	<i>Numerical solution of ordinary differential equation:</i> Euler's method, Runge-Kutta methods (order two and four).		2		
	<i>Curve fitting:</i> Curve fitting by the method of least squares. Fitting of curves of the form $y = ax + b$, $y = ax^b$ and $y = ax^2 + bx + c$.		1		
		Total	50		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG)

Paper Name & Code: Arduino SEC3

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	 Basic Electronics: Familiarity with fundamental electronic components like resistors, capacitors, diodes, and transistors is essential. Understanding concepts like voltage, current, resistance and Ohm's law is crucial for working with circuits. Circuit Design: Knowing, how to design 		1		
1. Prerequisite	and analyze simple circuits is important. This includes understanding circuit diagrams, bread-boarding and connecting components properly.	 Arduino Cookbook, Michael Margolis, 2011, O'Reilly Media Continue Standard and International Action Standard Action Sta	1	Hands on	
	3. Programming Fundamentals: Basic programming knowledge is necessary since Arduino programming involves writing code in C/C++. Understanding variables, loops, conditional statements and functions is vital.	2) Getting Started with Arduino, Massimo Banzi, 2009, O'Reilly Media	2	u anning, FF I	
	4. Understanding Sensors and Actuators: Arduino projects often involve interfacing with sensors (e.g., temperature, light, motion) and actuators (e.g., motors, LEDs). Understanding how these devices work and how to interface them with the Arduino is essential.		2		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG)

Paper Name & Code: Arduino SEC3

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	5. Digital and Analog Signals: Understanding the difference between digital and analog signals, as well as concepts like analog-to- digital conversion (ADC) and pulse-width modulation (PWM), is crucial for working with Arduino.		2		
	6. Serial Communication: Knowing how to communicate between the Arduino and other devices (e.g, computers, sensors) via serial communication (e.g, UART, 12C, SPI) is important for more advanced projects.	 Arduino Cookbook, Michael Margolis, 2011, O'Reilly Media Getting Started with Arduino, Massimo 	1	Hands on	
	7. Problem-Solving Skills: Being able to troubleshoot and debug circuits and code is essential. This involves logical thinking and the ability to break down problems into smaller, more manageable parts.	Banzi, 2009, O'Reilly Media	1	training, PPT	
Introduction of Microcontroller & Arduino	Basic Idea about Microcontroller; Introduction to Arduino: Brief history of the Arduino; Pin configurations of the board Arduino Uno. Brief idea about Arduino- nano/Arduino R4 WiFi/Arduino MRGA. Sources of constant voltages 5volt/3.3 volt		5	Hands on training, PPT	

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG)

Paper Name & Code: Arduino SEC3

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	and ground and corresponding pins of the respective boards. PWM and idea of duty cycle.				
	1. Setting up the arduino board. Installation of IDE in PC/laptop for Arduino programming.		1		
	2. Programming structure : Data types, variables, constants, operators, control statements, loops, functions, string.		3		
	Conditional like if, elseif; for and while loop. Idea about global variable and local variable.	1) Arduno Cookbook, Michael Margolis,	2		
Arduino Programming	Use of serial monitor for input/output and serial plotter for observation of variation of data.	2011, O'Reilly Media 2) Getting Started with Arduino, Massimo Banzi, 2009, O'Reilly Media	2	PPT, Practical	
Artuino rrogramming	3. Some Basic Operations: i) Binary operation through HIGH/LOW status of digital pin. Operation on inbuilt LED/LED connected externally in series with a resistance e.g., blinking.		1		
	ii) Sending analog voltage. Use of analog		1		
	iii) Measurement of voltage through appropriate pins.		1		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG)

Paper Name & Code: Arduino SEC3

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
Projects	10 Projects using Arduino	 Arduino Cookbook, Michael Margolis, 2011, O'Reilly Media, Physics Today 66, 11, 8 (2013) The Physics Teachers 52, 157 (2014) 	25	Hands on training using Arduino.	
		Total	50		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS), Ms

Kathakali Biswas (KB)

 Paper Name & Code:
 Sem-III-Basic Physics-I
 Minor-1

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	(a) Mather	natical Physics			
	a) Units & Dimension, Plotting functions	Mathematical	1		
1. Preliminaries	b) Limits And continuity	Methods in the	1	Chalk & talk	
	c) Taylor and Binomial series	Physical Sciences	1		
(GP)	d) Calculus, maxima. Minima	by M.L. Boas	1		
	e) Partial derivatives		1		
2. Ordinary Differential equations	a) First order	Mathematical Methods in the Physical Sciences	1	Chalk & talk	
(SDG)	b) Second order	by M.L. Boas	1		
3 Vectors	a) Vector products	Vector Analysis	2	Chalk & talk	
(SDG)	b) Vector differentiations, gradient, curl, divergence	outline series) By Spiegel	3		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

 Paper Name & Code:
 Sem-III-Basic Physics-I Minor-1

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	c) Divergence and Stoke's theorem		2	Chalk & talk	
 Curvilinear Coordinates (SDG) 	 a) Plane polar, spherical, cylindrical coordinates, vectors, velocity and acceleration 		5		
-	b) Vector integrals		1		
	Total		20		
	(B) Class	ical Mechanics		I	
1. Review of Newton's	a) Inertial frames, Galilean transformation	Classical	1	Chalk & talk	
(AS)	 b) Newton's laws conservation of linear momentum 	Mechanics By A.B. Gupta	1		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

 Paper Name & Code:
 Sem-III-Basic Physics-I
 Minor-1

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	c) Rotational motion		2	Chalk & talk	
	d) Problems		2		
2.Work Kinetic	a) Conservative and non conservative forces, potential		2		
energy Theorem (AS)	c) potential energy curves and Stability		1		
	d) Small oscillation		1		
3. Dynamics of a system	a) COM and reduced mass	Classical Mechanics By	2	Chalk & talk	
of particles(GP)	b) Momentum and energy of a system of particles	A.B. Gupta	2		
	a) Laws of Gravitation		1		
4. Central forces (GP)	b) Gravitational Potential and Intensity		2		
	c) Equation of motion in Central forces		3		
	d) Motion under inverse square law		2		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal (GP), Dr Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS), Ms Kathakali Biswas (KB)

 Paper Name & Code:
 Sem-III-Basic Physics-I Minor-1

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
5. Scattering (KB)	a) Two body collision and scattering		2	Chalk & talk	
6. Mechanics of Continuum	a) Kinematics of moving fluids, equation of continuity		2		
	b) Streamline and turbulent flow	Classical Mechanics By	1		
	c) Stokes law, Euler equation,	A.B. Gupta	1		
	d) Bernoulli's Theorem & application		2		
	TOTAL		30		
TOTAL (A+B)			50		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Waves and Optics, GCC-3

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Oscillations	Differential equation of simple harmonic oscillation and its solution. Kinetic energy, potential energy, total energy and their time average values.		3	Chalk & talk	
(SC)	Transient and steady states, resonance, sharpness of resonance; power dissipation and Quality Factor.	1) Waves and Oscillations, Brij Lal & N Subrahmanyam Vikas Publishing	3		
2. Superposition of Harmonic	Superposition of two collinear Harmonic oscillations having equal frequencies and different frequencies (beats).	2) Vibrations, Waves and Acoustics by Dr. D. Chattonadhyay & Dr. P. C.	1	Chalk & talk	
Oscillations (SC)	Superposition of two Perpendicular Harmonic Oscillations for phase difference $\delta = 0, \pi, 2\pi$.	Chattopadhyay & Dr. P. C. Rakshit 3) A Treatsie on Oscillations, Waves And Acoustics by Dr. D. Chattopadhyay	2	Assignment	
3. Wave motion	Plane progressive (travelling) waves. Wave equation for travelling waves. Particle and wave velocities.		3	Chalk & talk	
(SC)	Velocity of transverse vibrations of stretched strings, standing (stationary) waves in a string.		3		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Waves and Optics, GCC-3

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Phase and group velocities. Doppler effect.		1		
	Numerical problems.		1		
5. Geometrical	Fermat's principle, laws of reflection and refraction at a plane surface,		2		
Optics (SDG)	refraction at a spherical surface, lens formula. Combination of thin lenses - equivalent focal length. Dispersion and dispersive power.	1) Optics by B. Ghosh	3	Chalk & talk	
	Huygens principle: explanation of the laws of reflection and refraction.		3		
	Division of amplitude and wavefront. Young's double slit experiment. Intensity distribution, conditions of interference,	1) Wave and Optics by A. B. Gupta	4		
6. Interference (AS)	Interference in thin films: parallel and wedge shaped films. Fringes of equal inclination (Haidinger fringes); Fringes of equal thickness (Fizeau fringes).	2) Optics by B. Ghosh	3	Chalk & talk	
	Newton's Rings: Measurement of wavelength and refractive index. Numerical problems.		1	1	

Subject Name/Code: Physics Multidisciplinary

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Waves and Optics, GCC-3

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Fraunhofer diffraction: Single slit, double slit and diffraction grating.		3		
7. Diffraction	Resolving power of grating. Circular aperture (qualitative discussion only).	 Wave and Optics by A. B. Gupta Optics by B. Ghosh 	2	Challe & tall	
(AS)	Fresnel diffraction: Fresnel's half-period zones for plane wave. Theory of a Zone Plate: Multiple foci of a Zone Plate.		2		
	Class test		1		
	Description of linear, circular and elliptical polarization.		2		
8. Polarization (SDG)	Propagation of electromagnetic waves in birefringent medium, polarization in uniaxial crystals. Double refraction. Polarization by double refraction. Ordinary and extraordinary refractive indices.	1) Optics by B. Ghosh 2) Optics by Ajoy Ghatak	2	Chalk & talk,PPT, Assignment	
	Phase Retardation plates: Quarter-wave and Half-wave plates.		1		

Subject Name/Code: Physics Multidisciplinary

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Waves and Optics, GCC-3

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Rotatory polarization, Biot's laws for rotatory polarization. Specific rotation.		1		
	Numerical problems and Quiz		1		
	Class test.		1		
		Total	50		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Introduction to Graph Plotting (2D only, using GNUPLOT) (SC)	 a) Plotting 2D graphs: both functions and data files. Changing plot range and plot styles: the options- with points (w p), with dots (w d), with lines (w l), with lines points (w lp), linetype (lt),linewidth (lw). Using the set command for samples, xrange, yrange, xlabel ,ylabel, title etc. Theusing option b) User defined functions [Including the use of ternary operator for piece-wise defined functions.] c) Fitting data files using gnuplot. d) Polar and parametric plots e) Conditional Plotting of data from file using \$, &&, operators. (Graphs to be saved 	1) Scientific Computing in Python by Abhijit Kar Gupta	2 2 3 3 3 3	Computer Practical	
	withoutusing GUI)		3		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	a) Introduction Using the python interpreter as a calculator Variable and data types (int, float, complex, list, tuple, set, string, the type () function) Basic mathematical operations Compound statements in python Conditionals (if, elif, else) Loops (for, while)		3		
2. Introduction to programming in python (Version 3): (SDG)	b) User defined functions def: (return statement, default values for arguments, keywordarguments), lambda function. Importing modules with math and cmath as examples, Using help and dir command to use the inbuilt manual, Basic idea of namespaces- local and global Python scripts, I/O operations (including opening and writing to files)	1) Scientific Computing in Python by Abhijit Kar Gupta	3	Computer Practical, Study material	
	b) The python data types List: defining lists, reading and changing elements from lists, slicing (with discussion on the difference between ll=mm and ll=mm[:], concatenation, list comprehension. built in functions involving lists: range(),		4		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	<pre>len(), sum(), min(), max() - list methods: append(), extend(), count(), index(), sort(), insert(), pop(), remove(), reverse()</pre>				
	Tuples: Contrast and compare with lists, packing/unpacking using tuples (including a,b=b,a to swap variables) • Sets : set methods: update(), pop(), remove(), Set Theoretic operations: union, intersection, difference and symmetric difference of two sets.		4		
	Strings: defining strings, the use of single, double or triple quotes as string delimiters, len(),indexing, slicing, string concatenation, some string methods: strip(), split(), join(), find(), count(), replace(), string formatting in python (using the % operator	 Scientific Computing in Python by Abhijit Kar Gupta 	2	Computer	
3. Problems and Applications (SDG)	Finding factors of an integer Determining whether an integer is prime or not. Finding out prime number greater than or lesser than a given value. Finding out all prime numbers within a given range	1) Scientific Computing in Python by Abhijit Kar Gupta	10	Practical	

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr Shinjinee Das Gupta (SDG)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Root finding for a single variable (basic theory and algorithm) using Newton-Raphson andBisection method Sorting of lists (algorithm, flowchart and code) using Bubble or Selection sort Sum of series correct up to given decimal places (Sine, Cosine, Exponential etc.)		8		
	Simulation of motion of a particle in 1D under a given force $F(x, t, v)$ with given initial condition and plotting (x, t) , (x, v) , (t, v) . (Output to be saved in data files and Gnuplot to be used to plot graphs), using Euler's method only.		6	Computer Practical	
	Matrix Addition, Multiplication and Transpose using List Comprehension.		6		
		Total	60		

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Role of proper reasoning and experiments, with examples. Inductive and deductive logic.	1. Six Easy Pieces –	2		
1. Nature of Science	The character of physical laws, including universality.	2. The first three	2	Chalk and Talk	
	Difference between science and pseudo science	Weinberg	1		
2. Universe	The Copernican revolution, Kepler's laws and the Solar system, Galileo and birth of Telescopic Astronomy,	1. Six Easy Pieces –	4		
	Modern observations: Stars and galaxies, Life cycle of stars. Birth of the Universe,	2. The first three minutes	3	Chalk and Talk	
	Big Bang and Hubble expansion, Dark matter and dark energy.	Steven Weinberg	3		
3. Matter	Atoms and molecules: The physical basis of the Periodic Table	1. The character of physical laws –	2	Chalk and Talk	

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Heat and Thermodynamics: Basic idea about the kinetic theory of gases; Distinction between ideal and real gases; The three laws of thermodynamics. Concept of Entropy. Radioactivity: Alpha, beta &	Richard P. Feynman 2. Introduction to Astronomy: From Darkness to Blazing Glory – J. W Scott, JAS Educational Publications	6		
	Structure of the atom: Electron, Nucleus: proton and neutron. Mention of the Standard Model of particles & interactions.		4	Chalk and Talk	
4. Forces	Laws of falling bodies, Inertia, Gravitation, Electricity and Magnetism, Light and its dual property.	 Six Easy Pieces – Richard P. Feynman The first three minutes 	5	Chalk and Talk	

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

	Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments	
	The microscopic world of Quantum Mechanics.	– Steven Weinberg	5			
	Special and General Theory of Relativity (brief and qualitative ideas only)		5	Chalk and Talk		
	Total Lectures		45			

Sem - V

LESSON PLAN

Department Name: Physics

Name of Faculty: Dr Maitreyi Roy Kanjilal (MRK), Dr Subhendu Chandra (SC),

Paper Name	& Co	e: Electro	magnetic	Theory	(Th)	CC11
-------------------	------	------------	----------	--------	------	-------------

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Maxwell Equations (MRK)	Review of Maxwell's equations. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media.	1. Electricity and Magnetism by	3	Chalk-and-Talk	
	between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector.	Chattapadhaya and Rakshit. 2. Electricity and Magnetism by Griffith	3	Chaik-and-Taik	
	Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density	3. Electromagnetic Theory by Satya Prakash	3	Chalk-and-Talk	
	Problem Solving		3	Chalk-and-Talk	

Department Name: Physics

Name of Faculty: Dr Maitreyi Roy Kanjilal (MRK), Dr Subhendu Chandra (SC),

Paper Name	8 2	Code:	Electromagnetic	: Theory	(Th)	CC11
------------	------------	-------	-----------------	----------	------	-------------

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
2. EM Wave Propagation in Unbounded Media (MRK)	Plane EM waves through vacuum and isotropic dielectric medium,	1. Electricity and Magnetism by Chattapadhaya and	2	Chalk-and-Talk	
	Transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.	Rakshit. 2. Electricity and Magnetism by	3	Chalk-and-Talk	
	Propagation through conducting media, relaxation time, skin depth.	Griffith 3. Electromagnetic	3	Chalk-and-Talk	
	Problem Solving	Theory by Satya Prakash	2	Chalk-and-Talk	
3. EM Wave in Bounded Media (SC)	Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media.	1. Electromagnetic Theory by Satya Prakash	3	Chalk-and-Talk	
	Laws of Reflection & Refraction. Fresnel's formulae for perpendicular	2. Electromagnetic Theory and	4	Chalk-and-Talk	

Department Name: Physics

Name of Faculty: Dr Maitreyi Roy Kanjilal (MRK), Dr Subhendu Chandra (SC),

Paper Name & Code: Electromagnetic Theory (Th) CC11

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	& parallel polarization cases, Reflection & Transmission coefficients, Brewster's law.	Transmission Line by G. S. N. Raju 3. Classical			
	Total internal reflection, evanescent waves. Metallic reflection (normal Incidence).	Electricity and Magnetism by W. K. H. Panofsky and M. Phillips	1	Chalk-and-Talk	
	Problem Solving	4. Electricity and Magnetism by Benjamin Crowell	2	Chalk-and-Talk	
4. Polarization (SC)	Description of Linear, Circular and Elliptical Polarization.	1) B. Sc. Physics by C. L. Arora	4	Chalk-and-Talk	
	Propagation of E.M. Waves in birefringent medium.	2) Light by Ajoy kumar Ghatak	3	Chalk-and-Talk	

Department Name: Physics

Name of Faculty: Dr Maitreyi Roy Kanjilal (MRK), Dr Subhendu Chandra (SC),

Paper Name & Code: Electromagnetic Theory (Th) CC11

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
5. Polarization in uniaxial crystals (SC)	Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Phase Retardation Plates: Quarter Wave and Half-Wave Plates. Production & analysis of polarized light. Babinet Compensator and its Uses.	 Electricity and Magnetism by Griffith Electromagnetic Theory by Satya Prakash Light by Ajoy kumar Ghatak 	4 4 4 3	Chalk-and-Talk Chalk-and-Talk Chalk-and-Talk Chalk-and-Talk	
6. Rotatory polarization (SC)	Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation.	1. B. Sc. Physics by C. L. Arora	2	Chalk-and-Talk	

Department Name: Physics

Name of Faculty: Dr Maitreyi Roy Kanjilal (MRK), Dr Subhendu Chandra (SC),

Paper Name & Code: Electromagnetic Theory (Th) CC11

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Calculation of angle of rotation. Experimental verification of Fresnel's theory.	2. Electromagnetic Theory by Satya Prakash	2	Chalk-and-Talk	
	Specific rotation. Laurent's half-shade and biquartz polarimeters.	3. Light by Ajoy kumar Ghatak	2	Chalk-and-Talk	
		Total	60		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal

Paper Name & Code: Statistical Physics CC12 (Th)

	Planned			After implementa	ation
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	a) Microsatate, Macrostate, phase space, concept of ensemble		4	Chalk and Talk	
1. Classical Statistical	 b) Microcanonical ensemble its properties, thermodynamic probability, 	Statistical Mechanics by U. Nandi	3	PPT	
	 c) Canonical ensemble , Partition function, thermodynamic functions of ideal gas 	Statistical Mechanics by R.K. Pathria	6	Chalk and Talk	
Mechanics	d) Sackur Tetrode equation, Two level system, specific heat negative temperature		3	PPT	
	e) Grand Canonical ensemble, thermodynamic functions of ideal gas, Chemical potential	Statistical Physics by F. Reif	4	Chalk and Talk	
	f) Numerical problemsg)		4		
2 System of	a) Classical and Quantum approach		1	Chalk and Talk	
Identical Particles	b) MB distributionc) Fermions and Bosons		3	Chalk and Talk Chalk and Talk	

Department Name: Physics

Name of Faculty: Dr Gayatri Pal

Paper Name & Code: Statistical Physics CC12 (Th)

Planned				After implementa	ation
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	d) Numerical problems		1		
	a) BE distribution Law		3	Chalk and Talk	
2. BE	b) Strongly degenerate Bose gas		3	Chalk and Talk	
Statistics	c) BE condensation, Helium IV		3	PPT	
	d) Numerical problems		3		
	a) Classical laws of Radiation		3	PPT	
3. Radiation	b) Planck's Theory , Photon gas		3	Chalk and Talk	
	c) Numerical problems		1		

Department Name: Physics

Name of Faculty: Dr Gayatri Pal

Paper Name & Code: Statistical Physics CC12 (Th)

	Planned				ntion
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	a) FD distribution Law		3	Chalk and Talk	
	b) Strongly degenerate Fermi gas		2	PPT	
5 F.D. Statistics	c) Electron gas in metals		2	PPT	
	d) Specific heat of metals		1	Chalk and Talk	
	e) Numerical problems		2		
		Total	60		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

	Planned				
Unit/Group/Module/ Article	Topics	ReferenceBooks	No of Lecture Planned	Content Delivery Technique	Remarks/ Comments
	a) Stimulated light amplification and Einstein's Coefficients		4	Chalk and Talk,	
1.Einstein's Coefficients and Rate equation	b) Population inversion, threshold conditions, pumping power	Lasers: Theory & application by	3	material from	
(SDG)	c)Rate equations for2,3,and 4 level lasers	A. Ghatak& K. Thyagrajan	6	INFIEL COUISE	
	d)Numericalproblems		2		
2 Basiclaserproperties	a)Coherence, directionality		2	ChalkandTalk	
(SDG)	b)Mono-chromaticity, brightness		2	ChalkandTalk	
	a)Opticalresonatorsandtheir different configurations		3		
3.Resonators		Lasers: Theory &		ChalkandTalk,	
(SDG)	b)Stabilityconditionand stability diagram	application by A. Ghatak& K. Thyagrajan	2	PPT, study material from NPTEL course	
	c)Cavitylifetime,quality factor		2		
	d)Numericalproblems		2		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

	Planned				
Unit/Group/Module/ Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks/ Comments
	a)Transverse and longitudinal modes	Lasers: Theory &	3	Chalk and Talk,	
4.Transient effects (SDG)	b) Different methods of Q- switching,	application by A. Ghatak& K. Thyagrajan	application byPPT, studyA. Ghatak&2K. ThyagrajanNPTEL course	PPT, study material from NPTEL course	
	c) Mode locking, pockelscell	2			
	d) Numerical problems		1		
	a) Gas lasers, He–Ne and CO ₂		2	Chalk and Talk, PPT_study	
5.BasicLaser systems (SDG)	b) Solid state lasers, Ruby, Nd: YAG and semiconductor	Lasers: Theory & application by A. Ghatak&	3	material from NPTEL course	
	c)Liquid laser, Dye laser	K. Thyagrajan	1		
	d) Numerical problems		1		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

Planned					
Unit/Group/Module/ Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks/ Comments
6. Practical properties and uses of laser (KB)	 (a) The Line-shape function. Various Line broadening mechanisms: collisional broadening, Natural broadening, Doppler broadening. (b) Basic idea of Laser cooling and trapping. 	Lasers: Theory and Applications, A. Ghatak& K. Thyagarajan	3	Chalk and talk, ppt presentation, Google classroom	
7. Fiber optics (KB)	 (a) Optical fiber, coherent bundle, Numerical aperture. Attenuation of optical fibers. (b) Ray paths , Ray paths in a homogeneous medium, 	Introduction to Fiber	2 3	Chalk and talk.	
	In square law media. Pulse dispersion in parabolic index medium and in planar step index waveguide.	Optics, A. Ghatak, 1998, Cambridge University Press		ppt presentation, Google classroom	

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

 (c) Modes of a planar waveguide: TE and TM modes. Physical understanding of modes, Optical fibers: Guided modes of step-index and graded index fibers. 		5		
(d) Applications of optical fibers in Communication and Sensing.		1		
(e) Numerical problem discussion		1		
 (a) Principle of Holography. Recording and Reconstruction Method. 		2		
 (b) Theory of Holography between two plane waves. Point source holograms. 	Optics, E. Hecht & A. Ganesan, 2009, Pearson Prentice Hall	1	Chalk and talk, Google classroom	
(c) Problem discussion		1		
 (a) Origin of nonlinearity, susceptibility tensor, phase matching, second harmonic generation, Sum frequency 	Nonlinear Optics, R. Boyd, 2008, Academic Press	6	Chalk and talk, Google classroom	
	 (c) Modes of a planar waveguide: TE and TM modes. Physical understanding of modes, Optical fibers: Guided modes of step-index and graded index fibers. (d) Applications of optical fibers in Communication and Sensing. (e) Numerical problem discussion (a) Principle of Holography. Recording and Reconstruction Method. (b) Theory of Holography between two plane waves. Point source holograms. (c) Problem discussion (a) Origin of nonlinearity, susceptibility tensor, phase matching, second harmonic generation, Sum frequency generation Difference 	 (c) Modes of a planar waveguide: TE and TM modes. Physical understanding of modes, Optical fibers: Guided modes of step-index and graded index fibers. (d) Applications of optical fibers in Communication and Sensing. (e) Numerical problem discussion (a) Principle of Holography. Recording and Reconstruction Method. (b) Theory of Holography between two plane waves. Point source holograms. (c) Problem discussion (a) Origin of nonlinearity, susceptibility tensor, phase matching, second harmonic generation, Sum frequency generation Difference 	(c) Modes of a planar waveguide: TE and TM modes. Physical understanding of modes, Optical fibers: Guided modes of step-index and graded index fibers.5(d) Applications of optical fibers in Communication and Sensing.1(e) Numerical problem discussion1(a) Principle of Holography. Recording and Reconstruction Method.2(b) Theory of Holography between two plane waves. Point source holograms.0ptics, E. Hecht & A. Ganesan, 2009, Pearson Prentice Hall(c) Problem discussion1(a) Origin of nonlinearity, susceptibility tensor, phase matching, second harmonic generation, Sum frequency generation DifferenceNonlinear Optics, R. Boyd, 2008, Academic Press	(c) Modes of a planar 5 waveguide: TE and TM 5 modes. Physical understanding of modes, Optical fibers: Guided modes of step-index and graded index fibers. 1 (d) Applications of optical 1 fibers in Communication 1 (e) Numerical problem 1 discussion 2 (e) Numerical problem 1 (b) Theory of Holography. Chalk and talk, Between two plane Prentice Hall waves. Point source 1 holograms. 1 (c) Problem discussion 1 (a) Origin of nonlinearity, susceptibility tensor, phase matching, second harmonic generation, Sum frequency generation Difference Nonlinear Optics, R. Nonlinear Optics, R. Chalk and talk, Google classroom

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG), Ms. Kathakali Biswas (KB)

	frequency generation, Sum and Difference Frequency generation, for second-order nonlinear optical medium.	-	
	 (b) Nonlinear susceptibility of a classical anharmonic oscillator in case of noncentrosymmetric medium. 	2	
	(c) Numerical problems discussion	2	
Total		75	

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS)

Paper Name & Code: Nuclear and Particle Physics (Th) DSE B1(b)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Introduction (AS)	Recapitulation of general properties of nuclei, nuclear models and radioactivity.	 1) Nuclear Physics by S. N. Ghoshal 2) Nuclear Physics by Satadal Bhattacharya 	4	Chalk and Talk	
~ ~ ~	Problem Solving		1		
2. Nuclear Reactions (AS)	Types of Reactions, Conservation Laws,		1	Chalk and Talk, Study Material, Assignment	
	kinematics of reactions, Q value, reaction rate, reaction cross section,		3		
	Concept of compound and direct Reaction,		2		
	resonance reaction, Coulomb scattering (Rutherford scattering).		2		
	Problem Solving and quiz		1		
	Class Test		1		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS)

Paper Name & Code: Nuclear and Particle Physics (Th) DSE B1(b)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
3. Interaction of Nuclear Radiation with matter (AS)	Energy loss due to ionization (Bethe- Block formula), energy loss of electrons,	1) Nuclear Physics by S. N. Ghoshal32) Nuclear Physics by Satadal Bhattacharya13) Radiation detection and measurement, G.F. Knoll442	3	Chalk and Talk, Study Material, Assignment	
	Cerenkov radiation		1		
	Gammaray interaction through matter, photoelectric effect, Compton scattering, pair production		4		
	neutron's interaction with matter.		4		
	Problem Solving				
	Class Test		2		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS)

Paper Name & Code: Nuclear and Particle Physics (Th) DSE B1(b)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
4. Detector for Nuclear Radiations (SDG)	Gas detectors: estimation of electric field, mobility of particle, ionization chamber and GM Counter.	 1) Nuclear Physics by S. N. Ghoshal 2) Nuclear Physics by Satadal Bhattacharya 	4		
	Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT).	3) Radiation detection and measurement,G.F. Knoll	2		
	Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility),	4) Techniques for Nuclear and Particle Physics Experiments by W. R. Leo	3	Chalk and Talk, PPT, Tutorial Assignment	
	neutron detector.		1		
	Peer Teaching		2		
	Problem Solving		2		
	Class Test		1		

Subject Name/Code: PHSA

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS)

Paper Name & Code: Nuclear and Particle Physics (Th) DSE B1(b)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
5.Particle Accelerators (SDG)	Accelerator facility available in India, Different type of accelerators Van-de Graaf generator (Tandem accelerator)	 1) Nuclear Physics by S. N. Ghoshal 2) Nuclear Physics by Satadal Bhattacharya 	2	Chalk and Talk, PPT, Study Material	
	Linear accelerator		2		
	Cyclotron		2		
	Betatron Synchrotrons		3		
	Peer Teaching		2	-	
	Tutorial		3		
	Class Test and quiz		1		

Department Name: Physics

Name of Faculty: Dr Shinjinee Das Gupta (SDG),

Dr. Atri Sarkar (AS)

Paper Name & Code: Nuclear and Particle Physics (Th) DSE B1(b)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
6. Particle Physics (KB)	Fundamental particles and their families. Fundamental particle- interactions and their basic features. Gellmann Nishijima formula	1) Nuclear Physics by S. N. Ghoshal	2		
	Quark structure of hadrons and mesons		3		
	Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm.		3		
	Concept of quark model, color Quantum number and gluons		2		
	Tutorial		3		
	Class Test and quiz		2		
		Total	75		