Planned				After Implementation	
Unit / Group / Module / Article	Topics	No ofReference BooksLecturePlanned		Content Delivery Technique	Remarks Comments
SEM I	(Major) M	ATH-H-CC 1-1-Th	ı		
Calcul	us, Geometi	ry & Vector Analys	is		
Group A Differentiability of a function at a point and in an interval. Meaning of sign of derivative. Differentiating hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to functions of type <i>eax+bsin x</i> , <i>eax+bcos x</i> , (<i>ax +</i> <i>b)n sin x</i> , (<i>ax + b)n cos x</i> . Indeterminate forms. L'Hospital's rule (statement and example).	Calculus	1) T. Apostol, Volumes I and II, Wileyand Sons, 1969 2) R.R. Goldberg, Methods of Real Analysis, Oxford & IBH Publishing, 2020	6	Google Classroom, Hand Notes	МН

Group A	Calculus	1) T. Apostol, Volumes I and II, Wileyand Sons, 1969	10	Google Classroom, Hand Notes	МН
Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin x dx$, $\int \cos x dx$, $\int \tan n$ $x dx$, $\int \sec n x dx$, $\int (\log x) n dx$,		2) R.R. Goldberg, Methods of Real Analysis, Oxford & IBH			
$\int \operatorname{sin} nx \sin mx dx$, $\int \operatorname{sin} nx \cos mx dx$. Parametric equations, parametrizing a curve, arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution.		Publishing, 2020			
Group B Rotation of axes and second degree equations, classification of conics using the discriminant, reduction to canonical form, tangent and normal, polar equations of conics.	Geometry	Coordinate Geometry by S.L. Loney Advanced Analytical Geometry by Ghosh & Maity Analytical Geometry by R. M. Khan	12	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems.	PL
Group B Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids,	Geometry	Coordinate Geometry by S.L. Loney	16	Chalk Blackboard, Class-Notes &	PL

generating lines, identification of quadric surfaces like cone, cylinder, ellipsoid, hyperboloid, classification of quadrics.		Advanced Analytical Geometry by Ghosh & Maity Analytical Geometry by R. M. Khan		Hand-written theory notes with problems.	
Group C Triple product, vector equations, applications to geometry and mechanics — concurrent forces in a plane, theory of couples, system of parallel forces.	Vector Analysis	M.R. Speigel, Schaum's outline of Vector Analysis Tata McGraw Hill Ed., 2011.	6	Chalk Blackboard, Notes	BS
Group C Introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions of one variable.	Vector Analysis	M.R. Speigel, Schaum's outline of Vector Analysis Tata McGraw Hill Ed., 2011.	10	Chalk Blackboard, Notes	BS
SEM I (N C Language	U	ATH-H-SEC 1-1- matical Application			
Overview of architecture of computer, compiler, assembler, machine language, high level language, object oriented language, programming language, higher level language	C Language with Mathematical Applications	V. Rajaraman: Fundamentals of Computers; PHI Learning Private limited,2013	2	Chalk and Talk, Notes	DP

Constants, Variables and Data type of C- Program: Character set. Constants and variables data types, expression, assignment statements, declaration.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	6	Chalk and Talk, Notes, tutorial, class work	DP
Operation and Expressions: Arithmetic operators, relational operators, logical operators.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	5	Chalk and Talk, Notes, tutorial, class work	DP
Decision Making and Branching: decision making with if statement, if-else statement, Nesting if statement, switch statement, break and continue statement.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	6	Chalk and Talk, Notes, tutorial, class work	DP
Control Statements: While statement, do-while statement, for statement	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	5	Chalk and Talk, Notes, tutorial, class work	DP

Arrays: One-dimension, two-dimension and multidimensional arrays, declaration of arrays, initialization of one and multi-dimensional arrays.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	4	Chalk and Talk, Notes, tutorial, class work	DP
User-defined Functions: Definition of functions, Scope of variables, return values and their types, function declaration, function call by value, Nesting of functions, passing of arrays to functions, Recurrence of function.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	5	Chalk and Talk, Notes, tutorial, class work	DP
Introduction to Library functions: stdio.h, math.h, string.h, stdlib.h, time.h etc.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	1	Chalk and Talk, Notes	DP
Sample problems	C Language with Mathematical Applications	C. Xavier : C- Language and Numerical Methods, New Age International, 2007., V. Rajaraman : Computer Oriented Numerical Methods,	26	Practical : hands on experience	DP

	Prentice Hall of India,		
	1980		

SEM III (Major) MATH	I-H- CC 3-3-TI	H Real Analy	sis	
Group A Intuitive idea of real numbers. Mathematical operations and usual order of real numbers revisited with their properties (closure, commutative, associative, identity, inverse, distributive). Idea of countable sets, uncountable sets and uncountability of \mathbb{R} . Concept of bounded and unbounded sets in \mathbb{R} . L.U.B. (supremum), G.L.B. (infimum) of a set and their properties. L.U.B. axiom or order completeness axiom. Archimedean property of \mathbb{R} . Density of rational (and Irrational) numbers in \mathbb{R} .	Real Numbers	1) R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, 3 rd ., Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002 2) T. Apostol, Mathematical Analysis, Narosa Publishing House	10 Chalk and Talk, Tutorial, Google Classroom, Hand Notes, Class tests	AB
Group AIntervals. Neighbourhood of a point. Interior point. Openset. Union, intersection of open sets. Limit point andisolated point of a set. Bolzano-Weierstrass theorem forsets. Existence of limit point of every uncountable set as aconsequence of Bolzano-Weierstrass theorem. Derivedset. Closed set (definedas Complement of open set). Union and intersection ofclosed sets as a consequence. No nonempty proper subsetof \mathbb{R} is both open and closed. Expressing an open set of \mathbb{R}	Sets in ℝ	1) R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, 3 rd ., Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002 2) T. Apostol, Mathematical	14 Chalk and Talk, Tutorial, Google Classroom, Hand Notes, Class tests	AB

Group B Real sequence. Bounded sequence. Convergence and non- convergence. Examples. Boundedness of convergent sequence. Uniqueness of limit. Algebra of limits. • Relation between the limit point of a set and the limit of a convergent sequence of distinct elements. Monotone sequences and their convergence. Sandwich rule. Nested interval theorem. Limit of some important sequences. Cauchy's first and second limit theorems.	Real Analysis	R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis T. M. Apostol, Mathematical Analysis	6	Chalk and Talk, Notes	PL
--	---------------	--	---	--------------------------	----

Group B Subsequence. Subsequential limits, lim sup as the L.U.B. and lim inf as the G.L.B of a set containing all the subsequential limits. Alternative definition of lim sup and lim inf of a sequence using inequality or as lim sup x_n = subsequence. A bounded sequence {n} is convergent if and only if lim _up = inf sup{,{{ = 1}},, } and lim inf = sup inf{,{{ = 1}},, } [Equivalence between these definitions is assumed]. Every sequence has a monotone subsequence. Cauchy's general principle of Convergence.	Real Analysis	R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis T. M. Apostol, Mathematical Analysis	6	Chalk and Talk, Notes	PL
Group C Infinite series, convergence and non-convergence of infinite series, Cauchy criterion, tests for convergence; comparison test, limit comparison test, ratio test, Cauchy's <i>nnnnh</i> root test, Kummer's test (statement and problems), Raabe's test (statement and problems), Gauss test (statement and problems). Alternating series, Leibniz test. Absolute and conditional convergence, Riemann's rearrangement theorem (statement and problems).	Series	1) R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, 3 rd ., Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002 2) T. Apostol, Mathematical Analysis, Narosa Publishing House	8	Chalk and Talk, Tutorial, Google Classroom, Hand Notes, Class tests	AB

Ordinary Differential Equations – I and Group Theory - I

Group A Formation of differential equations, order and degree of a differential equation, First order and first degree differential equations; Homogeneous and exact differential equations, conditions for an equation of the first order to be exact, Integrating factors, Rules for finding integrating factors, Linear equations and Bernoulli equations.	Ordinary Differential Equations	S. L. Ross, Differential Equations G. F. Simmons, Differential Equations with Applications and Historical Notes	10	Chalk and Talk, Notes	BS
Group A First order higher degree differential equations solvable for x, y, and p, Clairaut's forms. Singular solutions, Equations of tac- locus, nodal locus, cuspidal locus.	Ordinary Differential Equations	S. L. Ross, Differential Equations G. F. Simmons, Differential Equations with Applications and Historical Notes	8	Chalk and Talk, Notes	BS

Group A Higher order linear and nonlinear equations, Concept of Wronskian and its properties, Complementary functions, Particular integrals, linear homogeneous and non- homogeneous equations with constant coefficients, Method of undetermined coefficients, Method of variation of parameters. Simultaneous linear differential equations.	Ordinary Differential Equations	S. L. Ross, Differential Equations G. F. Simmons, Differential Equations with Applications and Historical Notes	8	Chalk and Talk, Notes	BS
Group A Higher order linear equations with variable coefficients reducible to linear equations with constant coefficients (Euler's equation), Condition for exactness of higher order linear equations, Integrating factors, Equations of the form $d^ny/dx^n = f(y)$ ($\Box \ge 2$).	Ordinary Differential Equations	S. L. Ross, Differential Equations G. F. Simmons, Differential Equations with Applications and Historical Notes	10	Chalk and Talk, Notes	BS
Group B Definition of a group, examples of groups including permutation groups, dihedral groups and quaternion groups (through matrices), elementary properties of groups, examples of commutative and non-commutative groups.	Abstract Algebra	J. A. Gallian, Contemporary Abstract Algebra I. N. Herstein, Topics in Algebra	6	Chalk and Talk, Notes	PL

Group B Subgroups and examples of subgroups, necessary and sufficient condition for a nonempty subset of a group to be a subgroup, Normalizer, centralizer, center of a group, product of subgroups.	Abstract Algebra	J. A. Gallian, Contemporary Abstract Algebra I. N. Herstein, Topics in Algebra	6	Chalk and Talk, Notes	PL
Group B Order of an element of a group, order of a group, cyclic group, properties of cyclic groups, classification of subgroups of cyclic groups	Abstract Algebra	J. A. Gallian, Contemporary Abstract Algebra I. N. Herstein, Topics in Algebra	6	Chalk and Talk, Notes	PL
Group B Permutation, cycle notation for permutations, properties of permutation, even and odd permutations, Alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's little theorem.	Abstract Algebra	J. A. Gallian, Contemporary Abstract Algebra I. N. Herstein, Topics in Algebra	6	Chalk and Talk, Notes	PL

UNIT I Definition of Linear Programming Problem (L.P.P.). Formation of L.P.P. from daily life involving inequa- tions. Graphical solution of L.P.P. Basic solutions and Basic Feasible Solution (B.F.S) with reference to L.P.P. Matrix formulation of L.P.P. Degenerate and Non-degenerate B.F.S.	Linear Programming	1) G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 2) Hamdy A. Taha, Operations Research, An Introduction, 8 th Ed., Prentice-Hall India, 2006	12	Google Classroom, Hand Notes	AI
UNIT I Hyperplane, Convex set, Cone, extreme points, convex hull and convex polyhedron. Supporting and Separating hyperplane. The collection of a feasible solutions of an L.P.P. constitutes a convex set. The extreme points of the convex set of feasible solutions correspond to its B.F.S. and conversely. The objective function has its optimal value at an extreme point of the convex polyhedron generated by the set of feasible solutions (the convex polyhedron may also be unbounded). In the absence of degeneracy, if the L.P.P. admits of an optimal solution then at least one B.F.S. must be optimal. Reduction of a F.S. to a B.F.S.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	15	Google Classroom, Hand Notes	AI

UNIT II Slack and surplus variables. Standard form of L.P.P. theory of simplex method. Feasibility and optimality conditions.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	5	Google Classroom, Hand Notes	AB
UNIT II The algorithm. Two phase method. Degeneracy in L.P.P. and its resolution.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	8	Google Classroom, Hand Notes	AB
UNIT III Duality theory: The dual of dual is the primal. Relation between the objective values of dual and the primal problems. Relation between their optimal values. Complementary slackness, Duality and simplex method and their applications.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	5	Google Classroom, Hand Notes	AB

UNIT IV Transportation and Assignment problems. Mathematical justification for optimality criterion. Hungarian method. Traveling Salesman problem.	Linear Programming & Game Theory	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	7	Google Classroom, Hand Notes	AB
UNIT IV Concept of game problem. Rectangular games. Pure strategy and Mixed strategy. Saddle point and its existence. Optimal strategy and value of the game. Necessary and sufficient condition for a given strategy to be optimal in a game. Concept of Dominance. Fundamental Theorem of rectangular games. Algebraic method. Graphical method and Dominance method of solving Rectangular games. Inter-relation between theory of games and L.P.P.	Linear Programming & Game Theory	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	8	Google Classroom, Hand Notes	AB
SEM V (H) CBCS	CC 11 Pro	bability & Statistics	5		
UNIT I Random experiment, σ -field, Sample space, probability as a set function, probability axioms, probabil- ity space. Finite sample spaces. Conditional probability, Bayes theorem, independence. Real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical	Probability	1. GROUNDWORK OF MATHEMATICAL PROBABILITY AND STATISTICS by Amritava Gupta	20	Chalk Blackboard Notes	BS

expectation, moments, moment generating function, characteristic function. Discrete distri- butions : uniform, binomial, Poisson, geometric, negative binomial, Continuous distributions : uniform, normal, exponential.		2. Theory And Problems Of Probability And Statistics (Schaum S Outline Series) by Spiegel			
UNIT II Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, moments, covariance, correlation coefficient, independent random variables, joint moment generating function (jmgf) and calculation of covariance from jmgf, characteristic function. Conditional expectations, linear regression for two variables, regression curves. Bivariate normal distribution.	Probability	1. GROUNDWORK OF MATHEMATICAL PROBABILITY AND STATISTICS by Amritava Gupta 2. Theory And Problems Of Probability And Statistics (Schaum S Outline Series) by Spiegel	15	Chalk Blackboard Notes	BS
UNIT III Markov and Chebyshev's inequality, Convergence in Probability, statement and interpretation of weak law of large numbers and strong law of large numbers. Central limit theorem for independent and identically distributed random variables with finite variance.	Probability	1. GROUNDWORK OF MATHEMATICAL PROBABILITY AND STATISTICS by Amritava Gupta	5	Chalk Blackboard Notes	BS

		2. Theory And Problems Of Probability And Statistics (Schaum S Outline Series) by Spiegel		
UNIT IV	Statistics		15	MH
Sampling and Sampling Distributions : Populations and Samples, Random Sample, distribution of the sample, Simple random sampling with and without replacement. Sample characteristics.				
Sampling Distributions : Statictic, Sample moments. Sample variance, Sampling from the normal distributions, Chi-square, t/R and F -distributions, sampling distribution of X, s^2 , $(X - \mu)$				
Estimation of parameters : Point estimation. Interval Estimation- Confidence Intervals for mean and vari- ance of Normal Population. Mean-squared error. Properties of good estimators - unbiasedness, consistency, sufficiency, Minimum-Variance Unbiased Estimator (MVUE).				
Method of Maximum likelihood : likelihood function, ML estimators for discrete and continuous models.				
UNIT V	Statistics		15	MH
Statistical hypothesis : Simple and composite hypotheses, null hypotheses, alternative hypotheses, one- sided and two-sided hypotheses. The critical region and test statistic, type I error and type II error, level of significance. Power function of a test, most powerful test. The <i>p</i> -value (observed level of significance), Calculating <i>p</i> -values.				

Simple hypothesis versus simple alternative : Neyman- Pearson lemma (Statement only). Bivariate frequency Distribution : Bivariate data, Scatter diagram, Correlation, Linear Regression, principle of least squares and fitting of polynomials and exponential curves.					
Graphical Demonstration Graphical representation of data - how to load data, plot a graph viz. histograms (equal class intervals and unequal class intervals), frequency polygon, pie chart, ogives with graphical summaries of data. Measures of central tendency and measures of dispersion ,moments, skewness and kurtosis. Karl Pearson correlation coefficient. Correlation coefficient for a bivariate frequency distribution. Lines of regression, angle between lines and estimated values of variables. Fitting of polynomials, exponential curves by method of least squares. Confidence interval for the parameters of a normal distribution (one sample and two sample problems).	Teaching Aid	Online	5	R Software, Chalk Board	BS
	(H) CBCS Co y-II & Linear al				

UNIT I Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic	Group theory		12		PL		
groups, automorphism groups of finite and finitic cyclic groups, applications of factor groups to automorphism groups.							
UNIT I	Group theory		23		PL		
External direct product and its properties, the group of units modulo <i>n</i> as an external direct product, internal direct product, converse of Lagrange's theorem for finite abelian group, Cauchy's theorem for finite abelian group, Fundamental theorem of finite abelian groups.							
UNIT II	Linear algebra	1) John B. Fraleigh, A First Course in	12	Chalk and Talk,	AB		
Inner product spaces and norms, Gram-Schmidt orthonormalization process, orthogonal complements,		Abstract Algebra, 7 th Ed., Pearson, 2002		Tutorial, Google			
Bessel's inequality, the adjoint of a linear operator and its basic properties.		2) M. Artin, Abstract		Classroom,			
		Algebra, 2 nd Ed., Pearson, 2011		Hand Notes, Class tests			
UNIT II	Linear algebra	1) John B. Fraleigh, A First Course in	15	Chalk and	AB		
Dual spaces, dual basis, double dual, transpose of a linear		Abstract Algebra, 7 th		Talk, Tutorial,			
transformation and its matrix in the dual basis, annihilators. Eigenspaces of a linear operator,		Ed., Pearson, 2002 2) M. Artin, Abstract		Google Classroom,			
diagonalizability, invariant subspaces and Cayley- Hamilton theorem, the minimal polynomial for a linear		Algebra, 2 nd Ed.,		Hand Notes,			
operator, canonical forms (Jordan & rational).		Pearson, 2011		Class tests			
SEM V (H) CBCS DSE A 1.1							
Ad	Advanced Algebra						

UNIT I Group actions, stabilizers, permutation representation associated with a given group action, Applications of group actions: Generalized Cayley's theorem, Index theorem.	Group Theory		11		PL
UNIT I Groups acting on themselves by conjugation, class equation and consequences, conjugacy in S_n , p-groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of A_n for $n \ge 5$, non-simplicity tests.	Group Theory		14		PL
UNIT II Principal ideal domain, principal ideal ring, prime element, irreducible element, greatest common divisor (gcd), least common multiple (lcm), expression of gcd, examples of a ring <i>R</i> and a pair of elements <i>a</i> , <i>b R</i> such that gcd(<i>a</i> , <i>b</i>) does not exist, Euclidean domain, relation between Euclidean domain and principal ideal domain.	Ring Theory	Abstract Algebra by Sen, Ghosh , Mukhopadhyay & MaityContemporary Abstract Algebra by Joseph. A. GallianAdvanced Abstract Algebra by Ismail Hoque	15	Chalk Blackboard, Class-Notes & Hand- written theory notes with problems.	PL
UNIT II Polynomial rings, division algorithm and consequences, factorization domain, unique factorization domain, irreducible and prime elements in a unique factorization domain, relation between principal ideal domain, unique factorization domain, factorization domain and integral domain, Eisenstein criterion and unique factorization in Z[x].	Ring Theory	Abstract Algebra by Sen, Ghosh , Mukhopadhyay & Maity	25	Chalk Blackboard, Class-Notes & Hand- written theory notes	PL

		Contemporary Abstract Algebra by Joseph. A. Gallian Advanced Abstract Algebra by Ismail Hoque		with problems.	
UNIT II Ring embedding and quotient field, regular rings and their examples, properties of regular ring, ideals in regular rings.	Ring Theory	Abstract Algebra by Sen, Ghosh , Mukhopadhyay & Maity Contemporary Abstract Algebra by Joseph. A. Gallian Advanced Abstract Algebra by Ismail Hoque	10	Chalk Blackboard, Class-Notes & Hand- written theory notes with problems.	PL
SEM V (H	I) CBCS DSI	E A 1.2			
Bi	o Mathematics				
UNIT I Mathematical biology and the modeling process: an overview. Continuous models: Malthus model, logistic growth, Allee effect, Gompertz growth, Michaelis-Menten Kinetics, Holling type growth, bacterial growth in a chemostat, harvesting a single natural population, Prey predator systems and Lotka-Volterra equations, populations in competitions, epidemic models (SI, SIR, SIRS, SIC)	Bio Mathematics	 Introductory Mathematical Biology- Nandadulal Bairagi Elements of Mathematical Ecology Mark Kot 	25	Chalk and Talk, Notes, Computer Simulations	МН

UNIT II Activator-inhibitor system, insect outbreak model: Spruce Budworm. Numerical solution of the models and its graphical representation. Qualitative analysis of continuous models: Steady state solutions, stability and linearization, multiple species communities and Routh-Hurwitz Criteria. Phase plane methods and qualitative solutions, bifurcations and limit cycles with examples in the context of biological scenario. Spatial models: One species model with diffusion. Two species model with diffusion, conditions for diffusive instability, spreading colonies of microorganisms, Blood flow in circulatory system, travelling wave solutions, spread of genes in a population.	Bio Mathematics	 Introductory Mathematical Biology- Nandadulal Bairagi Elements of Mathematical Ecology Mark Kot 	30	Chalk and Talk, Notes, Computer Simulations	MI
UNIT III Discrete models : Overview of difference equations, steady state solution and linear stability analysis. Introduction to discrete models, linear models, growth models, decay models, drug delivery problem, dis- crete prey-predator models, density dependent growth models with harvesting, host-parasitoid systems (Nicholson- Bailey model), numerical solution of the models and its graphical representation. case studies. Optimal exploitation models, models in genetics, stage structure models, age structure models.	Bio Mathematics	1. Introductory Mathematical Biology- Nandadulal Bairagi2. Elements of Mathematical Ecology - Mark Kot	15	Chalk and Talk, Notes, Computer Simulations	MI

Graphical Demonstration Growth model (exponential case only). Decay model (exponential case only). Lake pollution model (with constant/seasonal flow and pollution concentration). Case of single cold pill and a course of cold pills. Limited growth of population (with and without harvesting). Predatory-prey model (basic Volterra model, with density dependence, effect of DDT, two prey one preda- tor). Epidemic model of influenza (basic epidemic model, contagious for life, disease with carriers). Battle model (basic battle model, jungle warfare, long	Teaching Aid (using any software)	 Introductory Mathematical Biology- Nandadulal Bairagi Elements of Mathematical Ecology - Mark Kot 	5	Computer Simulations, Google Colab	МН
range weapons). SEM V(H	I) CBCS DSE –	- B 1.2			
Linear Progr	camming & Gam	e Theory			
UNIT I Definition of Linear Programming Problem (L.P.P.). Formation of L.P.P. from daily life involving inequa- tions. Graphical solution of L.P.P. Basic solutions and Basic Feasible Solution (B.F.S) with reference to L.P.P. Matrix formulation of L.P.P. Degenerate and Non- degenerate B.F.S.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	12	Google Classroom, Hand Notes	AB

UNIT I Hyperplane, Convex set, Cone, extreme points, convex hull and convex polyhedron. Supporting and Separating hyperplane. The collection of a feasible solutions of an L.P.P. constitutes a convex set. The extreme points of the convex set of feasible solutions correspond to its B.F.S. and conversely. The objective function has its optimal value at an extreme point of the convex polyhedron generated by the set of feasible solutions (the convex polyhedron may also be unbounded). In the absence of degeneracy, if the L.P.P. admits of an optimal solution then at least one B.F.S. must be optimal. Reduction of a F.S. to a B.F.S.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	15	Google Classroom, Hand Notes	AB
UNIT II Slack and surplus variables. Standard form of L.P.P. theory of simplex method. Feasibility and optimality conditions.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	5	Google Classroom, Hand Notes	AB
UNIT II The algorithm. Two phase method. Degeneracy in L.P.P. and its resolution.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	8	Google Classroom, Hand Notes	AB

UNIT III Duality theory: The dual of dual is the primal. Relation between the objective values of dual and the primal problems. Relation between their optimal values. Complementary slackness, Duality and simplex method and their applications.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	8	Google Classroom, Hand Notes	AB
UNIT IV Transportation and Assignment problems. Mathematical justification for optimality criterion. Hungarian method. Traveling Salesman problem.	Linear Programming & Game Theory	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	10	Google Classroom, Hand Notes	AB
UNIT IV Concept of game problem. Rectangular games. Pure strategy and Mixed strategy. Saddle point and its existence. Optimal strategy and value of the game. Necessary and sufficient condition for a given strategy to be optimal in a game. Concept of Dominance. Fundamental Theorem of rectangular games. Algebraic method. Graphical method and Dominance method of solving Rectangular games. Inter-relation between theory of games and L.P.P.	Linear Programming & Game Theory	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	17	Google Classroom, Hand Notes	AB

Minor/MDC/General

Unit / Group / Module / Article	Topics	Reference Books	No of Lectu re Plann ed	Content Delivery Technique	Rem arks Com ment s	
SEM I (Minor + MDC) MATH-MD-CC 1-1-Th Calculus, Geometry & Vector Analysis						

Group A Differentiability of a function at a point and in an interval. Meaning of sign of derivative. Differentiating hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to functions of type <i>eax+b</i> sin x, <i>eax+b</i> cos x, (<i>ax</i> + <i>b</i>) <i>n</i> sin x, (<i>ax</i> + <i>b</i>) <i>n</i> cos x. Indeterminate forms. L'Hospital's rule (statement and example).	Calculus	 T. Apostol, Volumes I and II,Wileyand Sons, 1969 R.R. Goldberg, Methods of RealAnalysis, Oxford & IBH Publishing, 2020 	6	Google Classroom, Hand Notes	МН
Group A Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin x dx$, $\int \cos x dx$, $\int \tan n x dx$, $\int \sec n x dx$, $\int (\log x)n dx$, $\int \sin nx \sin mx dx$, $\int \sin nx \cos m x dx$. Parametric equations, parametrizing a curve, arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution.	Calculus	1) T. Apostol, Volumes I and II, Wileyand Sons, 1969 2) R.R. Goldberg, Methods of Real Analysis, Oxford & IBH Publishing, 2020	10	Google Classroom, Hand Notes	МН

Group B Rotation of axes and second degree equations, classification of conics using the discriminant, reduction to canonical form, tangent and normal, polar equations of conics.	Geometry	Coordinate Geometry by S.L. Loney Advanced Analytical Geometry by Ghosh & Maity Analytical Geometry by R. M. Khan	12	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems.	PL
Group B Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, generating lines, identification of quadric surfaces like cone, cylinder, ellipsoid, hyperboloid, classification of quadrics.	Geometry	Coordinate Geometry by S.L. Loney Advanced Analytical Geometry by Ghosh & Maity Analytical Geometry by R. M. Khan	16	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems.	PL
Group C Triple product, vector equations, applications to geometry and mechanics — concurrent forces in a plane, theory of couples, system of parallel forces.	Vector Analysis	M.R. Speigel, Schaum's outline of Vector AnalysisTata McGraw Hill Ed., 2011.	6	Chalk Blackboard, Notes	BS
Group C Introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions of one variable.	Vector Analysis	M.R. Speigel, Schaum's outline of Vector AnalysisTata McGraw Hill Ed., 2011.	10	Chalk Blackboard, Notes	BS

SEM I (MDC)MATH-MD-SEC 1-1-ThC Language with Mathematical Applications

Overview of architecture of computer, compiler, assembler, machine language, high level language, object oriented language, programming language, higher level language	C Language with Mathematical Applications	V. Rajaraman: Fundamentals of Computers; PHI Learning Private limited,2013	2	Chalk and Talk, Notes	DP
Constants, Variables and Data type of C- Program: Character set. Constants and variables data types, expression, assignment statements, declaration.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	6	Chalk and Talk, Notes, tutorial, class work	DP
Operation and Expressions: Arithmetic operators, relational operators, logical operators.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	5	Chalk and Talk, Notes, tutorial, class work	DP
Decision Making and Branching: decision making with if statement, if-else statement, Nesting if statement, switch statement, break and continue statement.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	6	Chalk and Talk, Notes, tutorial, class work	DP

Control Statements: While statement, do-while statement, for statement	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	5	Chalk and Talk, Notes, tutorial, class work	DP
Arrays: One-dimension, two-dimension and multidimensional arrays, declaration of arrays, initialization of one and multi-dimensional arrays.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	4	Chalk and Talk, Notes, tutorial, class work	DP
User-defined Functions: Definition of functions, Scope of variables, return values and their types, function declaration, function call by value, Nesting of functions, passing of arrays to functions, Recurrence of function.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	5	Chalk and Talk, Notes, tutorial, class work	DP
Introduction to Library functions: stdio.h, math.h, string.h, stdlib.h, time.h etc.	C Language with Mathematical Applications	Y. Kanetkar : Let Us C ; BPB Publication, 1999., E. Balagurnsamy : Programming in ANSI C, Tata McGraw Hill, 2004.	1	Chalk and Talk, Notes	DP

Sample problems	C Language with Mathematical Applications	C. Xavier : C- Language and Numerical Methods, New Age International, 2007., V. Rajaraman : Computer Oriented Numerical Methods, Prentice Hall of India, 1980	26	Practical : hands on experience	DP	
SEM III (Minor) MATH-H-MC 1-3-Th Calculus, Geometry & Vector Analysis						

Group A Differentiability of a function at a point and in an interval. Meaning of sign of derivative. Differentiating hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to functions of type <i>eax+bsin x</i> , <i>eax+bcos x</i> , (<i>ax +</i> <i>b)n sin x</i> , (<i>ax + b)n cos x</i> . Indeterminate forms. L'Hospital's rule (statement and example).	Calculus	1) T. Apostol, Volumes I and II, Wileyand Sons, 1969 2) R.R. Goldberg, Methods of Real Analysis, Oxford & IBH Publishing, 2020	6	Google Classroom, Hand Notes	МН
Group A Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin x dx$, $\int \cos x dx$, $\int \tan n x dx$, $\int \sec n x dx$, $\int (\log x) n dx$, $\int \sin nx \sin mx dx$, $\int \sin nx \cos m x dx$. Parametric equations, parametrizing a curve, arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution.	Calculus	1) T. Apostol, Volumes I and II, Wileyand Sons, 1969 2) R.R. Goldberg, Methods of Real Analysis, Oxford & IBH Publishing, 2020	10	Google Classroom, Hand Notes	МН

Group B Rotation of axes and second degree equations, classification of conics using the discriminant, reduction to canonical form, tangent and normal, polar equations of conics.	Geometry	Coordinate Geometry by S.L. Loney Advanced Analytical Geometry by Ghosh & Maity Analytical Geometry by R. M. Khan	12	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems.	PL
Group B Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, generating lines, identification of quadric surfaces like cone, cylinder, ellipsoid, hyperboloid, classification of quadrics.	Geometry	Coordinate Geometry by S.L. Loney Advanced Analytical Geometry by Ghosh & Maity Analytical Geometry by R. M. Khan	16	Chalk Blackboard, Class-Notes & Hand-written theory notes with problems.	PL
Group C Triple product, vector equations, applications to geometry and mechanics — concurrent forces in a plane, theory of couples, system of parallel forces.	Vector Analysis	M.R. Speigel, Schaum's outline of Vector Analysis Tata McGraw Hill Ed., 2011.	6	Chalk Blackboard, Notes	BS

Group C Introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions of one variable.	Vector Analysis	M.R. Speigel, Schaum's outline of Vector Analysis Tata McGraw Hill Ed., 2011.	10	Chalk Blackboard, Notes	BS		
SEM III (MDC) MATH-MD-CC 3-3-Th Ordinary Differential Equations & Group Theory							

Group A Formation of differential equations, order and degree of a differential equation, First order and first degree differential equations; Homogeneous and exact differential equations, conditions for an equation of the first order to be exact, Integrating factors, Rules for finding integrating factors, Linear equations and Bernoulli equations.	Ordinary Differential Equations	S. L. Ross, Differential Equations G. F. Simmons, Differential Equations with Applications and Historical Notes	10	Chalk and Talk, Notes	BS
Group A First order higher degree differential equations solvable for x, y, and p, Clairaut's forms. Singular solutions, Equations of tac-locus, nodal locus, cuspidal locus.	Ordinary Differential Equations	S. L. Ross, Differential Equations G. F. Simmons, Differential Equations with Applications and Historical Notes	8	Chalk and Talk, Notes	BS

Group A Higher order linear and nonlinear equations, Concept of Wronskian and its properties, Complementary functions, Particular integrals, linear homogeneous and non-homogeneous equations with constant coefficients, Method of undetermined coefficients, Method of variation of parameters. Simultaneous linear differential equations.	Ordinary Differential Equations	S. L. Ross, Differential Equations G. F. Simmons, Differential Equations with Applications and Historical Notes	8	Chalk and Talk, Notes	BS
Group A Higher order linear equations with variable coefficients reducible to linear equations with constant coefficients (Euler's equation), Condition for exactness of higher order linear equations, Integrating factors, Equations of the form $d^ny/dx^n = f(y) (\Box \ge 2)$.	Ordinary Differential Equations	S. L. Ross, Differential Equations G. F. Simmons, Differential Equations with Applications and Historical Notes	10	Chalk and Talk, Notes	BS

Group B Definition of a group, examples of groups including permutation groups, dihedral groups and quaternion groups (through matrices), elementary properties of groups, examples of commutative and non-commutative groups.	Abstract Algebra	J. A. Gallian, Contemporary Abstract Algebra I. N. Herstein, Topics in Algebra	6	Chalk and Talk, Notes	PL
Group B Subgroups and examples of subgroups, necessary and sufficient condition for a nonempty subset of a group to be a subgroup, Normalizer, centralizer, center of a group, product of subgroups.	Abstract Algebra	J. A. Gallian, Contemporary Abstract Algebra I. N. Herstein, Topics in Algebra	6	Chalk and Talk, Notes	PL
Group B Order of an element of a group, order of a group, cyclic group, properties of cyclic groups, classification of subgroups of cyclic groups	Abstract Algebra	J. A. Gallian, Contemporary Abstract Algebra I. N. Herstein, Topics in Algebra	6	Chalk and Talk, Notes	PL

Group B Permutation, cycle notation for permutations, properties of permutation, even and odd permutations, Alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's little theorem.	Abstract Algebra	J. A. Gallian, Contemporary Abstract Algebra I. N. Herstein, Topics in Algebra	6	Chalk and Talk, Notes	PL			
SEM III (MDC) MATH-MD-SEC 3-3-Th Linear Programming & Rectangular Games								

UNIT I Definition of Linear Programming Problem (L.P.P.). Formation of L.P.P. from daily life involving inequa- tions. Graphical solution of L.P.P. Basic solutions and Basic Feasible Solution (B.F.S) with reference to L.P.P. Matrix formulation of L.P.P. Degenerate and Non-degenerate B.F.S.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	12	Chalk and Talk, Hand Notes	AB
UNIT I Hyperplane, Convex set, Cone, extreme points, convex hull and convex polyhedron. Supporting and Separating hyperplane. The collection of a feasible solutions of an L.P.P. constitutes a convex set. The extreme points of the convex set of feasible solutions correspond to its B.F.S. and conversely. The objective function has its optimal value at an extreme point of the convex polyhedron generated by the set of feasible solutions (the convex polyhedron may also be unbounded). In the absence of degeneracy, if the L.P.P. admits of an optimal solution then at least one B.F.S. must be optimal. Reduction of a F.S. to a B.F.S.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	15	Chalk and Talk,, Hand Notes	AB
UNIT II Slack and surplus variables. Standard form of L.P.P. theory of simplex method. Feasibility and optimality conditions.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	5	Chalk and Talk,, Hand Notes	AB

UNIT II The algorithm. Two phase method. Degeneracy in L.P.P. and its resolution.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	8	Chalk and Talk,, Hand Notes	AB
UNIT III Duality theory: The dual of dual is the primal. Relation between the objective values of dual and the primal problems. Relation between their optimal values. Complementary slackness, Duality and simplex method and their applications.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	5	Chalk and Talk,, Hand Notes	AB
UNIT IV Transportation and Assignment problems. Mathematical justification for optimality criterion. Hungarian method. Traveling Salesman problem.	Linear Programming & Game Theory	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	7	Chalk and Talk,, Hand Notes	AB

UNIT IV Concept of game problem. Rectangular games. Pure strategy and Mixed strategy. Saddle point and its existence. Optimal strategy and value of the game. Necessary and sufficient condition for a given strategy to be optimal in a game. Concept of Dominance. Fundamental Theorem of rectangular games. Algebraic method. Graphical method and Dominance method of solving Rectangular games. Inter-relation between theory of games and L.P.P.	Linear Programming & Game Theory	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	8	Chalk and Talk,, Hand Notes	AB
SEM V(G) CBCS M	ITM-G-SEC-A-TH			
Object	Oriented Prog	gramming in C++			
Unit-1 Programming paradigms, characteristics of object oriented programming languages, brief history of C++, structure of C++ program, differences between C and C++, basic C++ operators, Comments, working with variables, enumeration, arrays and pointer.	C++	 Object Oriented Programming with C++, E.Balagurusamy Let us C, Yashavant P Kanetkar. 	10	Chalk, Hand Notes, Computer	DP
Unit-2 Objects, classes, constructor and destructors, friend function, inline function, encapsulation, data abstraction, inheritance, polymorphism, dynamic binding, operator overloading, method overloading, overloading arithmetic operator and comparison operators.		 Object Oriented Programming with C++, E.Balagurusamy Let us C, Yashavant P Kanetkar. 	10	Chalk, Hand Notes, Computer	DP

Unit-3 Template class in C++, copy constructor, subscript and function call operator, concept of namespace and exception handling	C++	 Object Oriented Programming with C++, E.Balagurusamy Let us C, Yashavant P Kanetkar. 	10	Chalk, Hand Notes, Computer	DP
SEM V(C	G) CBCS M Particle Dy	TM-G-DSE-A-TH mamics			
Velocity and Acceleration of a particle. Expressions for velocity and acceleration in rectangular Cartesian and polar co-ordinates for a particle moving in a plane. Tangential and normal components of velocity and acceleration of a particle moving along a plane curve.	Particle Dynamics	Advanced Analytical Dynamics by Utpal Chatterjee	10	Chalk Blackboard Notes	BS
Concept of Force : Statement and explanation of Newton's laws of motion. Work, power and energy. Principles of conservation of energy and momentum. Motion under impulsive forces. Equations of motion of a particle (i) moving in a straight line, (ii) moving in a plane.	Particle Dynamics	Advanced Analytical Dynamics by Utpal Chatterjee	10	Chalk Blackboard Notes	BS
Study of motion of a particle in a straight line under (i) constant forces, (ii) variable forces (S.H.M., Inverse square law, Damped oscillation, Forced	Particle Dynamics	Advanced Analytical Dynamics by Utpal Chatterjee	15	Chalk Blackboard Notes	BS

and Damped oscillation, Motion in an elastic string). Equation of Energy. Conservative forces. Motion in two dimensions : Projectiles in vacuum and in a medium with resistance varying linearly as velocity. Motion under forces varying as distance	Particle	Advanced Analytical Dynamics by Utpal Chatterjee	15	Chalk Blackboard Notes	BS
from a fixed point. Central orbit. Kepler's laws of motion. Motion under inverse square law.	Particle Dynamics	Advanced Analytical Dynamics by Utpal Chatterjee	10	Chalk Blackboard Notes	BS

SEM 1, SEM 3 IDC Group A Concept and definition of sets, subsets and set operations Union, Intersection, Complementation, Subtraction; Statements of basic laws of set algebra. Venn diagrams. Statement of the formula $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ and its application in daily life.	MATH-H nematics in Ex Basics of Set Theory	I	4-H-ID(C-3-Th Chalk and Talk, Tutorial, Google Classroom, Hand Notes	AB
Group B Statement and simple problems on First Principal of Mathematical Induction. Statement of Division Algorithm; G.C.D. of two positive integers, Expression of G.C.D. of two	Understanding Integers	M.K. Sen and B.C. Chakraborty; Introduction to Discrete Mathematics, Books and Allied (P) Ltd, 2019	18	Chalk and Talk, Tutorial, Google Classroom, Hand Notes	AB

			•		
integers x, y in the form px+qy (p, q are integers)					
(Euclidean Algorithm without proof).					
Representation of a positive integer in Binary and					
Decimal mode.					
Linear Diophantine equation in two variables:					
Statement of condition on the existence of integral					
solution, General / particular solution, Simple real					
life applications.					
Prime integers. Some elementary properties of					
prime integers (only statement), Fundamental					
theorem of Arithmetic (only statement), Algorithm					
for Primality test.					
Congruence of Integers: Meaning of $a \equiv b \pmod{d}$					
m). Statements of elementary properties of					
congruence; If of $a \equiv b \pmod{m}$, then for any					
integer c, of $(a + c) \equiv (b + c) \pmod{m}$, of $(a - c)$					
$c) \equiv (b - c) \pmod{m}$ and of $a \equiv b \pmod{m}$, $a^n \equiv b$					
b ⁿ (mod m) for natural numbers n.					
Applications of congruence of integers: Divisibility					
tests by 2, 3, 4,, 7, 9, 11, 13 (Statements of					
relevant results and problems only). Check Digits					
in International Standard Book Number (ISBN),					
Universal Product Code (UPC), VISA and					
MASTER card (Statements of relevant results and					
Problems only).Formation of Round Robin					
Tournament Table using congruence of integers					
(Technique and Problems only).					
Group C	Mathematical	Elliott Mendelson;	6	Chalk and Talk,	AB
Proposition, propositional variables and	Logic	Introduction to		Tutorial, Google	
propositional Logic.		Mathematical Logic,		Classroom, Hand	
Logic Connectives: NOT (Negation),			1	Notes	
OR(Disjunction), AND (Conjunction), Exclusive		Chapman and Hall, London, 1997		Inotes	

OR (XOR), IMPLICATION (If p then q) and BI- IMPLICATION (If and only if) and their Truth Tables; Truth value of a proposition, Truth tables of expressions involving more than one logical connective. Tautology, logical consequence, logical equivalence, contradiction. Group D Idea of Linear Programming Problems: Objective function, decision variables, constraints.	Basics of Operation Research	J.G. Chakraborty and P.R, Ghosh; Linear Programming and	8	Chalk and Talk, Tutorial, Google Classroom, Hand	AB
Formulation of daily life problems as an LPP (e.g. Carpenter problem, preparation of mixtures of chemicals, diet problems etc.) Solution of an LPP by graphical method (only bounded region). Definition of Game. Examples of daily life Two person zero sum game, Strategy, Payoff, Saddle point, Solution of a game problem without saddle point (only elementary problems).	Kesearch	Game Theory, Moulik Library, 2009		Notes	
Motivation of Linear Programming problem. Statement of L.P.P. Formulation of L.P.P. Slack and Surplus variables. L.P.P. is matrix form. Convex set, Hyperplane, Extreme points, convex Polyhedron, Basic solutions and Basic Feasible Solutions (B.F.S.). Degenerate and Non-degenerate B.F.S.	Linear Programming	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	7	Google Classroom, Hand Notes	МН
The set of all feasible solutions of an L.P.P. is a convex set. The objective function of an L.P.P. assumes its optimal value at an extreme print of the	Linear Programming	1) G. Hadley, Linear Programming, Narosa	8	Google Classroom, Hand Notes	MH

convex set of feasible solutions, A.B.F.S. to an L.P.P. corresponds to an extreme point of the convex set of feasible solutions.	PublishingHouse,New Delhi, 20022)2)HamdyA.Taha,OperationsResearch,AnIntroduction,8thEd.,Prentice-HallIndia, 2006			
Fundamental Theorem of L.P.P. (Statement only) Reduction of a feasible solution to a B.F.S. Standard form of an L.P.P. Solution by graphical method (for two variables), by simplex method and method of penalty. Concept of Duality. Duality Theory. The dual of the dual is the primal. Relation between the objective values of dual and the primal problems. Dual problems with at most one unrestricted variable, one constraint of equality. Transportation and Assignment problem and their optimal solutions.	 G. Hadley, Linear Programming, Narosa Publishing House, New Delhi, 2002 Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006 	10	Google Classroom, Hand Notes	МН