Lesson Plan (AY 2021-22)

Name of the Department : Physics

PP - Dr. Pratibha Pal, GP - Dr. Gayatri Pal, SC - Dr. Subhendu Chandra, SDG - Dr. Shinjinee Das Gupta, KB - Ms. Kathakali Biswas, SB - Smt. Swarnalekha Bandyopadhyay

Semester	Programme	Course and Name of	Торіс	Teacher	No.
	-	the Paper			Of
					hours
		CC - 1 (Theory)	1 a and b (Calculus)	KB	10
		(Mathematical	1 c and d (Calculus)	SDG	10
		Physics -I)	2 (Vector Algebra and Vector Calculus)	SC	25
			3 (Matrices)	SDG	15
		CC-1 (Practical)	1 Introduction to plotting graphs with GNU Plot	SC	09
	nons		2 Introduction to programming in Python	SDG	51
		CC – 2 (Theory)	1 (Fundamentals of Dynamics)	GP	12
		(Mechanics)	2 (Work and Energy)	GP	8
Ι			3 (Gravitation and Central Force Motion)	GP	10
			4 (Non-inertial Systems)	PP	12
			5 (Rotational Dynamics)	KB	12
			6 (Fluid Motion)	PP	6
		CC-2 (Practical)	General topics. Measurement of Moment of	SR +PP	
			inertia of a wire Flywheel Young's	5D TI	30
			Modulus measurement (method of flexure		+
			and Searl's), determination of g using bar		30
			pendulum, height measurement using		
			sextant.		
		GE-1/CC-1 (Theory)	1 (Mathematical Methods)	SDG	15
		(Mechanics)	2 (Introduction to Newtonian Mechanics)	GP	5
			3 (Rotational Motion)	GP	10
	Gen		4 (Central Force and Gravitation)	SDG	10
	Gen		5 (Oscillations)	KB	9
			6 (Elasticity)	KB	6
			7 (Surface Tension)	KB	5
		GE-1/CC-1 (Practical)	General topics, Measurement of Moment of inertia of a, Flywheel, Rigidity modulus measurement, Young's Modulus measurement (method of flexure).	SB	60
			determination of g using bar pendulum,.		

Semester	Programme	Course and Name of	Торіс	Teacher	No.
	-	the Paper			Of
					hours
		CC - 3 (Theory)	1 (Dirac Delta function and it's properties)	SC	3
		(Electricity and	2 (Electrostatics)	KB	12
		Magnetism)	3 (Dielectric Properties of Matter)	KB	6
			4 (Method of images)	KB	4
			5 (Electrostatic energy)	KB	3
			6 (The Magnetostatic Field)	GP	10
			7 (Magnetic Properties of Matter)	GP	7
			8 (Electro-magnetic Induction)	GP	7
			9 (Electrical Circuits)	SC	8
		CC – 3 (Practical)	Low resistance measuremnt using Carey	SB +GP	30
	Hons		Foster bridge and potentiometer. Study of		+
			series LCR and ac response of RC circuit,		30
			mutual inductance and magnetometer.		
		CC – 4 (Theory)	1 (Oscillation)	PP	8
		(Waves and Optics)	2 (Superposition of Harmonic Oscillation)	PP	4
			3 (Wave motion)	PP	4
			4 (Superposition of Harmonic waves)	PP	9
			5 (Wave Optics)	SDG	4
			6 (Interference)	SDG	10
			7 (Interferometers)	SDG	5
			8 (Diffraction)	SDG	16
		CC-4 (Practical)	Meldey's Experiment, Determination of	SDG	
			Cauchy constants, Fresnel biprism,		60
			Newton's ring, wedge shaped film and		
			Diffraction grating experiments.		
		GE-2/CC-2 (Theory)	1 (Essential Vector Analysis)	SC	5
		(Electricity and	2 (Electrostatics)	SC	25
		Magnetism)	3 (Magnetism)	GP	15
	Gen		4 (Electromagnetic Induction)	GP	5
			5 (Electrodynamics)	GP	10
		GE-2/CC-2	Carey Fosters bridge, Potentiometer,	SB	60
		(Practical)	magnetometer, ammeter to voltmeter		
			conversion and the vice versa.		
<u> </u>		CC – 5 (Theory)	1 (Fourier Series)	SC	10
		(Mathematical	2 (Frobenius Method and Special Functions)	KB	20
		Physics -II)	3 (Some Special Integrals)	KB	4
III	II		4 (Integral Transforms)	SC	10
	nons		5 (Introduction to Probablity)	SC	6
			6 (Partial Differential Equations)	SDG	10

Semester	Programme	Course and Name of	Topic	Teacher	No.
	0	the Paper	I I		Of
		Ĩ			hours
		CC – 5 (Practical)	1 (Introduction to numpy and scipy)	KB	50
			2 (Introduction to matplotlib)	KB	10
		CC – 6 (Theory)	1 (Introduction to Thermodynamics)	PP	25
		(Thermal Physics)	2 (Thermodynamic Potentials)	PP	15
			3 (Kinetic Theory of Gases)	SDG	15
			4 (Conduction of Heat)	SDG	5
		CC-6 (Practical)	Optical Lever, Thermal coefficient of	SB + PP	30
			resistance by Carey Foster bridge, Lee's		+
			method, Thermocouple and Platinum		30
			Resistance Thermometer.		
				a b	
	TT	CC - 7 (Theory)	1 (Radiation and its nature)	GP	15
	Hons.	(Modern Physics)	2 (Basics of Quantum Mechanics)	GP	15
			3 (Nuclear Structure)	GP	10
			4 (Interaction with and within nucleus)	GP	12
			5 (Lasers)	SDG	8
		CC – 7 (Practical)	Planck's constant using LED, verification of	SB + SC	30
			Stefan's Law, e/m of electrons using bar		+
			magnet, study of photoelectric effect and		30
			tunneling effect.		
TTT					
111		SECA -1 (Theory)	Introduction to LATEX, Document	SDG	15
		(Scientific Writing)	Classes, Page Layout, List Structures,		
			Representation of Mathematical Equations,		
			customization of fonts, Writing tables,		
			figures.		
				(DC)	1.7
		SECA -1 (Project)	writing articles/reports, research papers,	SDG	15
			laboratory note book, graphical analysis ato		
			laboratory note book, graphical analysis etc.		
	Gen	GE-3/ CC-3	1 (Laws of Thermodynamics)	PP	18
		(Theory)	2 (Thermodynamic Potentials)	PP	9
		(Thermal Physics	3 (Kinetic Theory of Gases)	SDG	10
		and Statistical	4 (Theory of Radiation)	SDG	8
		Mechanics)	5 (Statistical Mechanics)	GP	15
		GE-3/ CC-3	Optical Lever, Verification of Stefan's Law,		
		(Practical)	Thermal coefficient of resistance by Carey	SB	60
			Foster bridge, Lee's method and Jolly's		
			apparatus.		

Semester	Programme	Course and Name of	Topic	Teacher	No.
	U U	the Paper			Of
					hours
		SECA 1 (Theory)	Introduction to LATEX Decument	SDC	15
		SECA -1 (Theory)	Classes Daga Layout List Structures	SDG	15
		(Scientific writing)	Classes, Fage Layout, List Structures, Depresentation of Mathematical Equations		
			customization of fonts. Writing tables		
ш	Gen		figures		
111			inguies		
		SECA -1 (Project)	Writing articles/reports research papers	SDG	15
		SLEM-1 (Hojeet)	mathematical derivations, resume	500	15
			laboratory note book graphical analysis etc.		
		CC - 8 (Theory)	1 (Complex Analysis)	KB	20
		(Mathematical	2 (Variational Calculus in Physics)	SC	20
		Physics -III)	3 (Special Theory of Relativity)	PP	20
			S (Special Theory of Relativity)	11	20
		CC – 8 (Practical)	1 (Exploring Gaussian Integral and the delta	KB	11
			function)		
			2 (Solutions of Differential Equation)	KB	9
			3 (Special Functions)	KB	9
			4 (Solution of some PDEs)	KB	25
			5 (Fourier Series)	KB	5
		CC – 9 (Theory)	1 (Circuits and Network)	GP	4
		(Analog	2 (Semiconductor Diode and Applications)	GP	8
		Electronics)	3 (Bipolar Junction Transistors and Biasing)	GP	10
			4 (Field Effect Transistors)	GP	5
			5 (Regulated Power Supply)	GP	3
			6 (Amplifiers)	GP	5
			7 (Feedback amplifiers and OPAMP)	GP	15
			8 (Multivibrator)	GP	5
			9 (Oscillator)	GP	5
TX 7	Hons				
IV		CC-9 (Practical)	Zener diode, CE amplifier, regulated power		30
			supply, OPAMP and Wein Bridge	SB + GP	+
					30
		CC - 10 (Theory)	1 (Wavepacket Description)	SDG	5
		(Quantum	2 (General discussion of bound states in an	SDG	8
		Mechanics)	arbitrary potential)	apa	
			3 Quantum Mechanics of simple harmonic	SDG	6
			OSCIIIator)	SDC	0
			4 (Quantum Theory of Hydrogen-like	SDG	ð
			atoms)	DD	10
			spin)	r r	10
			6 (Spectra of Hydrogen atom and its fine	рр	5
			structure)	11	5
			7 (Atoms in Electric & Magnetic Fields)	РР	8
			8 (Many electron atoms)	PP	10
l					-

Semester	Programme	Course and Name of	Торіс	Teacher	No.
		the Paper			bours
		CC-10 (Practical)	1(Finding eigenstates using transcendental	KB	9
			equations)	IID IID	
			2 (Use of shooting algorithm)	KB	27
			3 (Time evolution of wavepacket)	KB	24
	Hons.	SECB1 (Theory)	1 (Introduction to Arduino)	SC	2
		(Arduino)	2 (Basic Ideas)	SC	3
			3 (Arduno Programming)	SC	10
		SECB1 (Project)	LED blinking and fading, measurement of	SDG	15
			voltage, interfacing 7 segment display,		
			constructing thermometer, data logger and		
			study of simple pendulum to measure g.		
TT 7		GE-4/CC-4 (Theory)	1 (Acoustics)	PP	10
1V		(Waves and Optics)	2 (Superposition of Vibrations)	PP	5
			3 (Vibration in a String)	PP	8
			4 (Introduction to wave optics)	SDG	2
			5 (Interference)	SDG	15
			6 (Diffraction)	SDG	10
			7 (Polarization)	PP	10
	Com	GE-4/CC-4	Focal length by Auxiliary method,	SDG	60
	Gen	(Practical)	sonometer, Newton's ring, wedge shaped		
			film and polarimeter.		
		SECB1 (Theory)	1 (Introduction to Arduino)	SC	2
		(Arduino)	2 (Basic Ideas)	SC	3
		[Either sem 4 or sem6]	3 (Arduino Programming)	SC	10
		SECB1 (Project)	LED blinking and fading, measurement of	SDG	15
		[Either sem 4 or	voltage, interfacing 7 segment display,		
		sem6]	constructing thermometer, data logger and		
			study of simple pendulum to measure g.		
		CC – 11 (Theory)	1 (Maxwell equations)	SC	12
		(Electromagnetic	2 (EM wave propagation in unbounded	SC	10
		Theory)	media)	~~	
			3 (EM wave in bounded media)	SC	10
			4 (Polarization)	SC SC	/
V	Hons.		6 (Potatization in uniaxial crystals)		15
v				SC	0
		CC-11 (Practical)	Brewster's angle, Fresnel's law and Malus		
			verification, polarimeter, dispersive power	SDG	60
			of grating.		
1	1	1		1	1

Semester	Programme	Course and Name of	Topic	Teacher	No.
Semester	Trogramme	the Paper	ropie	i cuciici	Of
		une i uper			hours
		CC = 12 (Theory)	1 (Classical Statistical Mechanics)	GP	25
		(Statistical Physics)	2 (System of Identical Particles)	GP	6
		(Statistical 1 Hysics)	3(Bose Einstein Statistics)	GP	12
			4 (Radiation : classical and quantum	GP	7
			Aspects)	GI	,
			5 (Fermi-Dirac Statistics)	GP	10
				01	10
		CC-12 (Practical)	1(Study of Random numbers and Time	KB	20
			series)		
			2 (Application of Random numbers)	KB	28
			3 (Scaling and plots, exponents and	KB	12
			parameters)		
		DESA1 b (Theory)	1 (Einstein coefficients and Rate equations)	SDG	20
	Hons.	(Laser and Fiber	2 (Basic properties of laser)	SDG	4
		Optics)	3 (Resonators)	SDG	8
			4 (Transient effect)	SDG	5
			5 (Basic Laser Systems)	SDG	7
			6 (Practical properties and use of laser)	SDG	5
			7 (Fiber optics)	KB	12
			8 (Holography)	KB	4
			9 (Introductory Nonlinear Optics)	KB	10
\mathbf{V}		DESA1 b (Tutorial)	Assignments	SDG +	10 + 5
·				KB	
		DSEB1 b (Theory)	1 (Introduction)	PP	5
		(Nuclear and	2 (Nuclear Reactions)	PP	10
		Particle Physics)	3 (Interactions of Nuclear Radiation with	PP	15
			matter)		
			4 (Detector for Nuclear Radiation)	PP	15
			5 (Particle Accelerators)	PP	15
			6 (Particle Physics)	PP	15
		DESD1 b (Tutorial)	Assignments	DD	15
		DESDI 0 (Tutonal)	Assignments	ГГ	15
		DSE - A (1) (Theoy)	1 (Circuits and Network)	SC	6
		(Analog	2 (Semiconductor Devices)	SC	20
		Electronics)	3 (Regulated Power Supply)	SC	4
			4 (Field Effect Transistors)	SC	5
			5 (Feedback Amplifiers)	SC	5
			6 (Operational Amplifiers)	SC	15
	Con		7 (Sinusoidal Oscillators)	SC	5
	Gen	DSE - A (1)	Verification of Thevenin, Norton's	SB + SC	30
		(Practical)	Theorem, Characteristics of Photo		+
			transistor, Characteristics of CE transistor,		30
			Construction of regulated power supply and		
			study of OPAMP.		

Semester	Programme	Course and Name of	Торіс	Teacher	No.
	-	the Paper			Of
					hours
V	Gen	SECA -1 (Theory) (Scientific Writing) [Either sem 3 or sem5]	Introduction to LATEX, Document Classes, Page Layout, List Structures, Representation of Mathematical Equations, customization of fonts, Writing tables, figures.	SDG	15
		SECA -1 (Project) [Either sem 3 or sem5]	Writing articles/reports, research papers, mathematical derivations, resume, laboratory note book, graphical analysis etc	SDG	15
		CC - 13 (Theory)	1 (Integrated Circuits)	GP	5
		(Digital Systems	2 (Number System)	GP	7
		and Applications)	3 (Digital Circuits)	GP	16
			4 (Implementation of different circuits)	GP	6
			5 (Data processing circuits)	GP	5
			6 (Sequential circuits)	GP	6
			7 (Registers and Counters)	GP	6
			8 (Computer Organization)	GP	6
			9 (Data conversion)	GP	3
		CC - 13 (Practical)	Basic and universal gates, Half and Full adder, SR, D, JK, Flipflops using NAND, 4 bit shift register. 4x1 multipleyer	SB +GP	30 + 30
			on sint register, 4x1 multiplexer.		50
		CC - 14 (Theory)	1 (Crystal Structure)	PP PP	12
		(Solid State	2 (Elementary Lattice Dynamics)	PP	10
		Physics)	3 (Magnetic properties of Matter)	PP DD	8
			5 (Drude's Theory)	DD FF	0
VI	Hone		6 (Elementary Band Theory)	SDG	12
	110115.		7 (Superconductivity)	PP	6
		CC - 14 (Practical)	BH Loop, Dielectric constant, band gap and Hall effect by four probe, Temperature controller and Magnetic Susceptibility.	SB+SC	30 + 30
		DSE-A2(a)	1 (Nanoscale Systems)	SDG	10
		(Theory)	2 (Synthesis of Nanostructure Materials)	KB	15
		Nano materials and	3 (Characterization)	KB	10
		Applications	4 (Optical Properties)	SDG	15
			5 (Electron Transport)	SDG	10
			6 (Applications)	KB	15
		DSE- A2 (a) (Tutorial)	Assignments	SDG +KB	7+8

ä	D	<i>a</i> 111 <i>a</i>	- ·		
Semester	Programme	Course and Name of	Торіс	Teacher	No.
		the Paper			Of
					hours
		DSE- B2 (a)	1 (Electronic Communication)	SC	10
		(Theory)	2 (Analog Modulation)	SC	15
		(Communication	3 (Analog Pulse Modulation)	SC	10
	Hons.	Electronics)	4 (Digital Pulse Modulation)	SC	15
			5 (Introduction to Communication and	SC	25
			Navigation System)		
		DSE- B2 (a)	Assignments	SC	15
		(Tutorial)			
		DSE - B (1) (Theoy)	1 (Integrated Circuits)	GP	4
		(Digital	2 (Number System)	SDG	7
VI		Electronics)	3 (Digital Circuits)	SDG	20
			4 (Data Processing Circuits)	SC	5
			5 (Sequential Circuits)	SC	12
			6 (Registers and Counters)	GP	12
		DSE - B (1)	Basic and universal gates, Half and Full	SB+SC	30
	Com	(Practical)	adder, SR, D, JK, Flipflops using NAND, 4		+
	Gen		bit shift register, 4x1 multiplexer.		30
		SECB1 (Theory)	1 (Introduction to Arduino)	SC	2
		(Arduino)	2 (Basic Ideas)	SC	3
		[Either sem 4 or	3 (Arduino Programming)	SC	10
		sem6]			
		SECB1 (Project)	LED blinking and fading, measurement of	SDG	15
		[Either sem 4 or	voltage, interfacing 7 segment display,		
		sem6]	constructing thermometer, data logger and		
		_	study of simple pendulum to measure g.		