Lesson Plan – Honours(Theory) [Session 2018-2019]

Name: Ishita Saha

Department: Chemistry

Semester	Programme	Course and Name of the Paper	Topic	Teacher	No. Of hours
1	Hons	CC – 2	Rate Law, order and molecularity	IS	18
			Role of	IS	02
			Temperature		
			Homogeneous	IS	
			catalysis		
1	General	CC 1/GE 1			20
2	General	CC/GE 2			10

Year	Paper	Unit	Topic	No. of lectures	Session
2 Hons	IIIA	CHT 23a Unit I	Thermodynamics Discussion of laws and		July to Pre-Puja
			derivations	15	
			Thermodynamic Equilibrium Equilibrium constants and condition of equilibrium	10	
				T 4 1 25	
				Total 25	
		CHT 23a Unit II	Liquid state and viscosity of fluids		post-Puja to Winter vacation.
				7	

			Total 7	
	CHT 23b Unit II	Conductance and measurement of conductance, cell constant, specific conductance and molar conductance. Variation of specific and equivalent conductance with dilution for strong and weak electrolytes	5	post-Winter Vacation to Test examination
		Glass electrode and determination of pH of a solution. Potentiometric titrations: acid-base and redox	5	
4			10	July to Pre-Puja
				post-Puja to Winter vacation.
				post-Winter Vacation to Test examination

Year	Paper	Unit	Topic	No. of lectures	Session
3	5				July to Pre-Puja
Hons					post-Puja to Test examination)
	VIA	CHT			July to Pre-Puja
		33b Unit I	Unit I. Phase equilibrium and colligative properties Definitions of phase, component and degrees of freedom. Phase rule and its derivations. Definition of phase diagram.	3	
		CHT 33b Unit II	Unit II. Statistical thermodynamics and the third law Macrostates and microstates, thermodynamic	8	

	probability, entropy and probability, Boltzmann distribution formula (with derivation).	Total 34	
CHT 32b Unit II	Unit II. Statistical thermodynamics and the third law	5	post-Puja to Test examination)
	Macrostates and microstates, thermodynamic probability, entropy and	3	
CHT 32c Unit I	probability, Boltzmann distribution formula (with derivation).		
		6	
CHT 32c Unit II	Unit I. Kinetics and photochemistry Collision theory (detailed	3	
	treatment); outline of Transition State theory. Primary	3	
	kinetic salt effect. Lindemann theory of unimolecular reaction.	3 Total 29	
	Potential energy curves (diatomic molecules), Frank-Condon principle and		
	vibrational structure of electronic spectra. Bond dissociation and principle of		
	determination of dissociation energy (ground state). Decay of		
	excited states by radiative and non-radiative paths. Fluorescence and phosphorescence,		
	Jablonsky diagram. Laws of photochemistry: Grotthus-Draper law, Stark-Einstein law		

T _ T		
7	Unit II. Spectroscopy	July to Pre-Puja
	Rotational spectroscopy of diatomic molecules: rigid	
	rotor model, selection	
	rules,	
	spectrum, characteristic	
	features of spectral lines	
	(spacing and intensity).	
	Determination	post-Puja to Test
	of bond length, effect of	examination)
	isotopic substitution.	
	Vibrational spectroscopy	
	of diatomic molecules:	
	SHO model, selection	
	rules,	
	spectra; anharmonicity	
	and its consequences on	
	energy levels, overtones,	
	hot bands.	
	Raman Effect.	
8	Characteristic features and	July to Pre-Puja
0	conditions of Raman	July to Fre-Fuja
	activity with	
	suitable illustrations.	
	Rotational and vibrational	
	Raman spectra. Rule of	
	mutual exclusion	
	with examples.	
	with examples.	post-Puja to Test
		examination)

Lesson Plan – Honours(Practical) [Session 2018-2019]

Name: Ishita Saha

Department: Chemistry

Practical

Semester	Programme	Course and Name of the	Topic	Teacher	No. Of hours
		Paper			
1	Hons	CC-2-P	Experiment 1 : Study of	IS	20
			kinetics of decomposition		
			of H ₂ O ₂		
			Experiment 2 : Study of		
			kinetics of acid-catalyzed		
			hydrolysis of methyl acetate		
			Experiment 3 : Study of		
			viscosity of unknown liquid		

(glycerol, sugar) with respect to water. Experiment 4: Study of the variation of viscosity with the concentration of the solution Experiment 5: Determination of solubility of sparingly soluble salt in water, in electrolyte with common ions and in neutral electrolyte (using common indicator)	

Year	Paper	Unit	Topic	No. of lectures	Session
2 Hons	3		Qualitative Analysis of Single Organic Compound(s) Experiment A: Detection of special elements (N, Cl, and S) in organic compounds. Experiment B: Solubility and Classification (solvents: H ₂ O, dil. HCl, dil. NaOH) Experiment C: Detection of functional groups -NO ₂ , -NH ₂ , -COOH, carbonyl (-CHO, >C=O), -OH (phenolic) in solid organic compounds.	30	July to Pre-Puja
			Experiments A - C with unknown (at least 6) solid samples containing not more than two of the above types of functional groups should be done. Qualitative Analysis of Inorganic Mixtures: Experiments A:		post-Puja to Winter vacation. post-Winter Vacation to Test examination
			Preliminary Tests for Acid		

and Basic radicals in
given samples.
Experiments B: Wet tests
<u> </u>
for Acid and Basic
radicals in given samples.
Experiments C:
Confirmatory tests.
Acid Radicals: Cl-, Br-, I-,
NO ₂
-1, S ₂ -, SO ₄
-2, PO4
-3, BO ₃
3-, H3BO3.
Basic Radicals: Na+, K+,
Ca+2, Sr+2, Ba+2, Cr+3,
Mn+2, Fe+3, Ni+3, Cu+2,
NH4
+.

Year	Paper	Unit	Topic	No. of lectures	Session
3	5		1. Titration of Na ₂ CO ₃ +		July to Pre-Puja
Hons			NaHCO3 mixture vs HCl		
			using phenolphthalein and		
			methyl		
			orange indicators.		
			2. Titration of HCl +		
			CH ₃ COOH mixture vs		
			NaOH using two different		
			indicators to find		
			the composition.		
			3. To find the total		
			hardness of water by		
			EDTA titration.		
			4. To find the PH of an		post-Puja to Test
			unknown solution by		examination)
			comparing color of a		
			series of HCl solutions		
			+ 1 drop of methyl		
			orange, and a similar		
			series of NaOH solutions		
			+ 1 drop of		
			phenolphthalein.		
			5. To determine the rate		
			constant for the acid		
			catalysed hydrolysis of an		
			ester.		
	6		6. Determination of the		July to Pre-Puja
			strength of the H ₂ O ₂		July WIIC-I uja
			sample.		
			7. To determine the		
			solubility of a sparingly		
		l .	solubility of a sparingly		

soluble salt, e.g. KHTa (one bottle)	
	post-Puja to Test examination)

Lesson Plan – General (theory) [Session 2018-2019]

Name: Dr. Ishita Saha Department: Chemistry

Year	Paper	Unit	Topic	No. of lectures	Session
2	2	CGT 21	Unit II. Basic physical		July to Pre-Puja
			chemistry II		
			Chemical kinetics and		
			catalysis: order and		
			molecularity of reactions, rate		
			laws and		
			rate equations for first order		
			and second order reactions		
			(differential and integrated		
			forms); zero order reactions.		
			Unit I. Basic physical		post-Puja to Winter
			chemistry III		vacation.
			Thermodynamics: Definition		
			of thermodynamic terms:		
			Intensive and extensive		
			variables, isolated, closed and		
			open systems. Cyclic,		
			reversible and irreversible		
			processes.		
			Thermodynamic functions		
			and their differentials. Zeroth		
			law of thermodynamics,		
			concept		
			of heat (q) and work (w).		
			First law of		post-Winter Vacation
			thermodynamics, Spontaneous		to Test examination
			processes, heat engine,		
			Carnot cycle and its		
			efficiency, Second law		
			of thermodynamics,		
			Chemical equilibrium:		
			chemical equlibria of		
			homogeneous and		
			heterogeneous		
			systems, derivation of		
			expression of equilibrium		
			constants; temperature,		
			pressure and		
			concentration dependence of		
			equilibrium constants (K _P ,		

			Kc, Kx); Le Chatelier's principle of dynamic equilibrium.			
Year	Paper	Unit	Topic	No. of lo	ectures	Session
3	IVA	CGT 31b Unit II			5	July to Pre-Puja
					5	
					3	
					3	
				Total	16	
		CGT 31c Unit II			3	post-Puja to Test examination)
		-			2	
				Total	7	_
				Total	1	

Lesson Plan – General (practical) [Session 2018-2019]

Name: Dr. Priyabrata Roy Department: Chemistry

Year	Paper	Unit	Topic	No. of lectures	Session
1	3	CGP 23	Qualitative Analysis of Single		July to Pre-Puja
			Organic Compound(s)		
			Experiment A: Detection of		
			special elements (N, Cl, and	4X3	
			S) in organic compounds.		
	Experiment B: Solubility and				
			Classification (solvents:		
			H2O, dil. HCl, dil. NaOH)	3X1	
			Experiment C: Detection of		
		functional groups -NO2, - NH2, -COOH, carbonyl			
	(-CHO, >C=O), -OH				
			(phenolic) in solid organic	4X3	
			compounds.		

		Total 27	
CGP 23	Experiments A - C with unknown (at least 6) solid samples containing not more than two of the above types of functional groups.	18(6X3)	post-Puja to Winter vacation.
	runetional groups.	18(6X3)	post-Winter Vacation to Test examination

Year	Paper	Unit	Topic	No. of lectures	Session
2	3	CGT 21a	Qualitative Analysis of Inorganic Mixtures: Experiments A: Preliminary Tests for Acid and Basic radicals in given samples. Experiments B: Wet tests for Acid and Basic radicals in given samples. Experiments C: Confirmatory tests. Acid Radicals: Cl ⁻ , Br ⁻ , I ⁻ , NO2 ⁻¹ , S ²⁻ , SO4 ⁻² , PO4 ⁻³ , BO3 ³⁻ , H3BO3. Basic Radicals: Na ⁺ , K ⁺ , Ca ⁺² , Sr ⁺² , Ba ⁺² , Cr ⁺³ , Mn ⁺² , Fe ⁺³ , Ni ⁺³ , Cu ⁺² , NH4 +	33(11X3)	July to Pre-Puja
		CGT 21a	Analysis of at least 6 unknown samples by each student	18(6X3) 18(6X3)	post-Puja to Winter vacation. post-Winter Vacation to Test examination

Lesson Plan – Honours(Theory) [Session 2018-2019]

Name: Ishita Saha

Department: Chemistry

Semester	Programme	Course and Name of the Paper	Topic	Teacher	No. Of hours
1	Hons	CC – 2	Rate Law, order and molecularity	IS	18
			Role of	IS	02
			Temperature		
			Homogeneous	IS	
			catalysis		
1	General	CC 1/GE 1			20
	0 1	CC/CE 2			10
2	General	CC/GE 2			10

Year	Paper	Unit	Topic	No. of lectures	Session
2 Hons	IIIA	CHT 23a	Thermodynamics		July to Pre-Puja
		Unit I	Discussion of laws and derivations	15	
			Thermodynamic Equilibrium Equilibrium constants and condition of equilibrium	10	
				Total 25	-
		CHT 22b	Nitrogen compounds and Organometallics		post-Puja to Winter vacation.
		Unit I	Nitrogen compounds Organometallics	7	

			Total	7 14	
	CHT 22b Unit II	Reactions: Rearrangements 1,2-shift: Rearrangement to electron-deficient carbon, Electron-deficient nitrogen, Electron-deficient oxygen. Aromatic rearrangements		5	post-Winter Vacation to Test examination
			Total	8	
4					July to Pre-Puja
					post-Puja to Winter vacation.
					post-Winter Vacation to Test examination

Year	Paper	Unit	Topic	No. of lectures	Session
3	5				July to Pre-Puja
Hons					post-Puja to Test
					examination)
	VIA	CHT 32a Unit I	Carbanion chemistry and cyclic stereochemistry		July to Pre-Puja
			Carbanions	6	
			Cyclic Stereochemistry	1	
			Conformational analysis	6	
		CHT 32a Unit II	Spectroscopy UV, IR, NMR (elementary)		
			UV Spectra	3	
			IR Spectra	3	
			PMR Spectra	3	

	CHT	Synthetic strategies and		
	32b	Asymmetric synthesis		
	Unit I			
		Retrosynthetic analysis	4	
		Strategy of ring synthesis	4	
		28,8	-	
		Asymmetric synthesis	4	
			-	
			Total 34	
			10001 01	
	CHT	Carbohydrate chemistry		post-Puja to Test
	32b	<u>earbonydrate enemistry</u>		examination)
	Unit II	Monosaccharides	5	cxammation)
		Wollosaccharides	3	
		Disaccharides	3	
		Disaccilarides	3	
	СНТ			
	32c	Conhagueles		
		<u>Carbocycles</u> and		
	Unit I	<u>Heterocycles</u>		
		Delement of the day of the second		
		Polynuclear hydrocarbons	6	
		TT . 1' 1		
		Heterocyclic compounds	6	
	CHE			
	CHT	Amino acids, peptides and		
	32c	nucleic acids		
	Unit II		2	
		Amino acids	3	
		B	2	
		Peptides	3	
		X 1	2	
		Nucleic acids	3	
			TT 4 1 00	
			Total 29	
7				July to Pre-Puja
				post-Puja to Test
				examination)
8				July to Pre-Puja
				post-Puja to Test
				examination)
				examination)

Lesson Plan – Honours(Practical) [Session 2018-2019]

Name: Priyabrata roy Department: Chemistry

Practical

Semester	Programme	Course and	Topic	Teacher	No. Of hours
		Name of the			
		Paper			
1	Hons	CC-1-P	Separation	PR	15
		Organic (1A)	based upon		
		organic (111)	solubility		
		CC-2-P	Determination	PR	15
		Organic (1B)	of boiling point		
2	Hons	CC-3-P	Organic	PR	45
			Preparations		

Year	Paper	Unit	Topic	No. of lectures	Session
2	3				July to Pre-Puja
Hons					post-Puja to Winter
					vacation.
					post-Winter
					Vacation to Test
					examination
	4				July to Pre-Puja
					post-Puja to Winter
					vacation.
					post-Winter
					Vacation to Test
					examination

Year	Paper	Unit	Topic	No. of lectures	Session
3	5				July to Pre-Puja
Hons					post-Puja to Test
					examination)
	6				July to Pre-Puja
					post-Puja to Test
					examination)
	VIIB				July to Pre-Puja
		CHP 34b	Qualitative analysis of single solid organic compounds	40	
			Organic preparations	40	
				Total 80	

	CHP 34a	Spectroscopic Analysis of Organic Compounds			post-Puja to Test examination)
		Assignment of labelled peaks in the ¹H NMR spectrum of the known organicvcompounds explaining the relative ∂ values and splitting pattern		20	
		Assignment of labeled peaks in the IR spectrum of the same compound		20	
			Total	40	
8					July to Pre-Puja
					post-Puja to Test examination)

Lesson Plan – General (theory) [Session 2018-2019]

Name: Dr. Priyabrata Roy Department: Chemistry

Year	Paper	Unit	Topic	No. of lectures	Session
2	2		•		July to Pre-Puja
					post-Puja to Winter vacation.
					post-Winter Vacation to Test examination
Year	Paper	Unit	Topic	No. of lectures	Session
Year 3	IVA	CGT 31b Unit II	Polymers, manufacture, physical properties and uses of natural rubber. Paints, Varnishes and Synthetic Dyes. Drugs and pharmaceuticals. Fermentation Chemicals.	5 5 3 Total 16	July to Pre-Puja
		CCT 41	F . 07 P .		1 TD 1
		CGT 31c Unit II	Fats-Oils-Detergents.	3	post-Puja to Test examination)
			Pesticides.	2	
			Food Additives.	2	
				Total 7	

Lesson Plan – General (practical) [Session 2018-2019]

Name: Dr. Priyabrata Roy Department: Chemistry

Year	Paper	Unit	Topic	No. of lectures	Session
1	3	CGP 23	Qualitative Analysis of Single Organic Compound(s) Experiment A: Detection of special elements (N, Cl, and S) in organic compounds. Experiment B: Solubility and Classification (solvents: H2O, dil. HCl, dil. NaOH)	4X3 3X1	July to Pre-Puja

	Experiment C: Detection of functional groups -NO2, -NH2, -COOH, carbonyl (-CHO, >C=O), -OH (phenolic) in solid organic compounds.	4X3	
		Total 27	
CGP 23	Experiments A - C with unknown (at least 6) solid	18(6X3)	post-Puja to Winter vacation.
	samples containing not more		vacation.
	than two		
	of the above types of functional groups.		
		18(6X3)	post-Winter Vacation to Test examination

Year	Paper	Unit	Topic	No. of lectures	Session
2	3	CGT 21a	Qualitative Analysis of Inorganic Mixtures: Experiments A: Preliminary Tests for Acid and Basic radicals in given samples. Experiments B: Wet tests for Acid and Basic radicals in given samples. Experiments C: Confirmatory tests. Acid Radicals: Cl ⁻ , Br ⁻ , I ⁻ , NO2 ⁻¹ , S ²⁻ , SO4 ⁻² , PO4 ⁻³ , BO3 ³⁻ , H3BO3. Basic Radicals: Na ⁺ , K ⁺ , Ca ⁺² , Sr ⁺² , Ba ⁺² , Cr ⁺³ , Mn ⁺² , Fe ⁺³ , Ni ⁺³ , Cu ⁺² , NH4 +.	33(11X3)	July to Pre-Puja
		CGT 21a	Analysis of at least 6 unknown samples by each student	18(6X3) 18(6X3)	post-Puja to Winter vacation. post-Winter Vacation to Test examination

PART(1+1+1 2016) REGULATION

Lesson Plan – Honours (theory)

Session 2018-2019

Name: Dr. Anuva Samanta Department: Chemistry

Year	Paper	Unit	Topic	No. of lectures
2	IIIB	CHT 23b Unit I	Quantum Chemistry I Wave-particle duality, light as particles: photoelectric and Compton effects; electrons as waves and the de Broglie hypothesis. Elementary concepts of operators, eigenfunctions and eigenvalues. Linear operators.	30
			Commutation of operators, fundamental commutator and uncertainty relation (without proof). Expectation value. Hermitian operator. Schrodinger time-independent equation: nature of the equation, acceptability conditions imposed on the wave functions and probability interpretations of wave function. Particle in a box: setting up of Schrodinger equation for one-dimensional box and its solution. Comparison with free particle eigenfunctions and eigenvalues. Properties of PB wave functions (normalisation, orthogonality, probability distribution). Expectation values of x, x2, px and px2 and their significance in relation to the uncertainty principle. Extension of the problem to two and three dimensions and the concept of degenerate energy	
			levels.	
		CHT 23b Unit II	Electrochemistry Conductance and measurement of conductance, cell	20
			constant, specific conductance and molar conductance. Variation of specific and equivalent conductance with dilution for strong and weak electrolytes. Kohlrausch's law of independent migration of ions, ion conductance and ionic mobility. Equivalent and molar conductance at infinite and their determination for strong and weak electrolytes. Ostwald's dilution law. Debye-Huckel model (physical idea only). Application of conductance measurement (determination of solubility product and ionic product of water). Conductometric titrations. Determination of transport number by moving boundary method. Types of electrochemical cells and examples, cell reactions, emf and change in free energy, ΔH and ΔS of cell reactions from emf measurements. Thermodynamic derivation of Nernst equation. Standard cells. Half-cells / electrodes, different types of electrodes (with examples). Standard electrode potential (IUPAC convention) and principles of its determination. Types of concentration cells.	

			Liquid junction potential and its minimisation. Glass electrode and determination of pH of a solution.	
			Potentiometric titrations: acid-base and redox.	
3	PAPER VIIA	CHT 33a Unit I	Properties of solids, interfaces and dielectrics Crystal, crystal planes, law of rational indices, Calculation of fraction occupied for simple cubic, bcc, and fcc. Miller indices. Bragg's law and its applications for the 16 determination of crystal structure for cubic system single crystal. Crystal structures of NaCl and KCl. Special features of interfaces compared to bulk. Surface dynamics: Physical and chemical adsorption. Freundlich and Langmuir adsorption isotherms; multilayer adsorption and BET isotherm (no derivation required). Gibbs adsorption isotherm and surface excess. Heterogeneous catalysis (single reactant). Colloids: lyophobic and lyophilic sols. Origin of charge and stability of lyophobic colloids. Coagulation and Schultz-Hardy rule. Zeta potential and Stern double layer (qualitative idea). Tyndall effect. Electrokinetic phenomenon (qualitative idea only). Electrical properties of molecules: Polarizability of atoms and molecules, dielectric	30
			constant and polarisation, molar polarisation for polar and non-polar molecules. Clausius-Mosotti equation and Debye equation (both with derivation) and their application. Determination of dipole moments.	
		Unit II	Quantum Chemistry – II Simple Harmonic Oscillator: setting up of the Schrodinger stationary equation, energy expression (without derivation), expression of wave function for $n=0$ and $n=1$ (without derivation) and their characteristic features. Stationary Schrodinger equation for the H-atom in polar coordinates, separation of radial and angular (θ, ϕ) parts. Solution of ϕ -part and emergence of quantum number 'm'; energy expression (without derivation), degeneracy. Hydrogenic wave functions up to $n=2$ (expression only); real wave function. Concept of orbitals and shapes of s and p orbitals. C	20
		CHT 33c Unit II	Spectroscopy Rotational spectroscopy of diatomic molecules: rigid rotor model, selection rules, spectrum, characteristic features of spectral lines (spacing and intensity). Determination of bond length, effect of isotopic substitution. Vibrational spectroscopy of diatomic molecules: SHO model, selection rules, spectra; anharmonicity and its consequences on energy levels, overtones, hot bands. Raman Effect. Characteristic features and conditions of Raman activity with suitable illustrations. Rotational and vibrational Raman spectra. Rule of mutual exclusion with examples.	20

Lesson Plan – Honours (practical)

Name: Dr. Anuva Samanta Department: Chemistry

Year	Paper	Unit	Topic	No.	of
				lecture	es
2	IVB	CHP	Instrumental Estimations	3x20	
		24b	1. Spectrophotometry: MnII; pKin.		
			2. Conductometry: HCl-AcOH mixture; dibasic acid.		
			3. Potentiometry: Halide ion.		
			4. pH-metry: HCl-AcOH mixture; dibasic acid.		
			5. Ion-exchanger: Cation content of a sample by cation exchanger		
3	VIIB	CHP 35a	Experiments: 1. Determination of surface tension of a given solution by drop weight method using a stalagmometer, considering aqueous solutions of NaCl, acetic acid, ethanol etc, as systems. 2. Determination of viscosity coefficient of a given solution with Ostwald's viscometer considering aqueous solutions of cane-sugar, glycerol, ethanol, etc. 3. Determination of solubility of sparingly soluble salts in water and various Electrolyte medium by titrimetric method. KHTa as sparingly soluble salt in water, KCl, NaNO3 may be used. 4. Determination of partition coefficient of Iodine or Acetic acid in	50	
			 water and an immiscible organic solvent. 5. Determination of the rate constant for the first order acid catalyzed hydrolysis of an ester (V0 and V∞ be supplied). 6. Determination of rate constant of decomposition of H2O2 by acidified KI solution using clock reactions. A separate laboratory workbook should be maintained for these experiments. 		
	VIIIB	CHP 35b	Experiments: 1. To study the kinetics of inversion of sucrose using polarimeter. 2. To study the phase diagram of a binary system (Phenol + water) and the effect of impurities (e.g. NaCl). 3. Determination of ionization constant of a weak acid by conductometric method. 4. To study the kinetics of saponification of ester by conductometric method. 5. Determination of the equilibrium constant of the reaction KI + I2 = KI 3 by partition method (partition coefficient to be supplied). 6. Determination of E0 of Fe+3/Fe2 couple in the hydrogen scale by potentiometric titration of ferrous ammonium sulfate solution using KMnO4, or, K2Cr2O7 as standard. 7. Determination of concentration of (i) AgNO3 solution and (ii) solubility product of AgCl by potentiometric titration of standard KCl solution against AgNO3 solution. 8. Determination of pK values of weak monobasic, dibasic and polybasic acid by pHmetric method (e.g. using, acetic acid, succinic acid, oxalic acid, phosphoric acid, etc.). 9. Study of the kinetics of the reaction I- + S2O8 2- by colorimetric method.	80	

Lesson Plan – General (theory) Name: Dr. Anuva Samanta Department: Chemistry

Year	Paper	Unit	Topic	No. of lectures
2	ПА	CGT 21a Unit I	Gaseous state: Gas laws, kinetic theory of gas, collision and gas pressure, derivation of gas laws from kinetic theory, average kinetic energy of translation, Boltzmann Constant and absolute scale of temperature, Maxwell's distribution law of molecular speeds (without derivation), most probable, average and root mean square speed of gas molecules, principle of equipartition of energy (without derivation). Mean free path and collision frequencies. Heat capacity of gases (molecular basis); viscosity of gases. Real gases, compressibility factor, deviation from ideality, van der Waals equation of state, critical phenomena, continuity of states, critical constants. Liquid state: physical properties of liquids and their measurements; surface tension and viscosity.	7
		CGT 22a Unit I	Thermodynamics: Definition of thermodynamic terms: Intensive and extensive variables, isolated, closed and open systems. Cyclic, reversible and irreversible processes. Thermodynamic functions and their differentials. Zeroth law of thermodynamics, concept of heat (q) and work (w). First law of thermodynamics, internal energy (U) and enthalpy (H); relation between Cp and Cv, calculation of w, q, ΔU and ΔH for expansion of ideal gas under isothermal and adiabatic conditions for reversible and irreversible processes including free expansion. Joule-Thomson Coefficient and inversion temperature. Application of First law of thermodynamics: standard state, standard enthalpy changes of physical and chemical transformations: fusion, sublimation, vaporization, solution, dilution, neutralization, ionization. Hess's law of constant heat summation. Bond-dissociation energy, Born haber cycle for calculation of lattice energy. Kirchhoff's equation, relation between ΔH and ΔU of a reaction.	7
		CGT 22a Unit II	Basic physical chemistry IV Chemical equilibrium: chemical equlibria of homogeneous and heterogeneous systems, derivation of expression of equilibrium constants; temperature, pressure and concentration dependence of equilibrium constants (KP, KC, KX); Le Chatelier's principle of dynamic equilibrium. Colloids: colloids and crystalloids, classification of colloids, preparation and purification of colloids: ferric hydroxide sol and gold sol. Properties of colloids: Brownian motion, peptization, dialysis, Tyndal effect and its applications.	4

		Protecting colloids, gold number, isoelectric points, coagulation of colloids by electrolytes, Schulze-Hardy rule.	
	GT 22b	Basic physical chemistry VI	4
Un	nit II	Electrode potential: Electrode potentials, Nernst	
		Equation, reference electrodes: normal hydrogen electrode and calomel electrodes, Emf of	
		electrochemical cells and its measurement, electrode	
		potential series and its applications. Solutions of non-	
		electrolytes: Colligative properties of solution, Raoult's	
		Law, relative lowering of vapor pressure, osmosis and	
		osmotic pressure; elevation of boiling point and	
		depression of freezing point of solvents.	

Year	Paper	Unit	Topic	No.	of
				lectu	res
3	IVA	CGT 31c	Industrial chemistry III	15	
		Unit II	Fats-Oils-Detergents: Fats and oils, natural fat, edible and		
			inedible oil of vegetable origin. Common fatty acids,		
			glycerides. Hydrogenation of unsaturated oil, production of		
			vanaspati and margarine. Production of toilet and washing		
			soaps, Enzymebased detergents, detergent powder, liquid		
			soaps. Pesticides: Common pesticides: Production,		
			applications and residual toxicity of gammaxane, aldrin,		
			parathion, malathion, DDT, paraquat, decamethrin. Food		
			Additives: Food flavour, food colour, food preservatives,		
			artificial sweeteners, acidulants, alkalies, edible emulsifiers		
			and edible foaming agents, sequesterants – uses and abuses		
			of these substances in food beverages.		
		CGT 31a	Error analysis and computer applications Accuracy and		
		Unit II	precision of quantitative analysis, determinate-,		
			indeterminate-, systematic- and random-errors. Methods of		
			least squares and standard deviations. General introduction		
			to computers, different components of a computer,		
			hardware and software, input and output devices, binary		
			numbers and arithmetic. Introduction to computer		
			languages, programming and operating systems.		

Lesson Plan – General (practical)

Name: Dr. Anuva Samanta Department: Chemistry

Year	Paper	Unit	Topic	No.	of
	_			lectu	res
2	IIIB	CGP 24	Qualitative Analysis of Inorganic Mixtures:	3x10	
			Experiments A: Preliminary Tests for Acid and Basic radicals in given		
			samples. Experiments B: Wet tests for Acid and Basic radicals in given		
			samples. Experiments C: Confirmatory tests.		
			Acid Radicals: Cl ⁻ , Br ⁻ , I ⁻ , NO ₂ ¹⁻ , S ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻ , BO ₃ ³⁻ , H ₃ BO ₃ .		
			Basic Radicals: Na ⁺ , K ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Cr ³⁺ , Mn ²⁺ , Fe ³⁺ , Ni ²⁺ , Cu ²⁺ ,		
			$\mathrm{NH_4}^+$.		
		CGP 24	Analysis of at least 6 unknown samples by each student	3x10	
		CGP 24	Analysis of at least 6 unknown samples by each student		3x10

Year	Paper	Unit	Topic	No.	of
	_			lectu	ıres
3	IVB	CGP 32	Experiments:	3x8	
			1. Titration of Na2CO3 + NaHCO3 mixture vs HCl using		
			phenolphthalein and methyl orange indicators.		
			2. Titration of HCl + CH3COOH mixture vs NaOH using two different		
			indicators to find the composition.		
			3. To find the total hardness of water by EDTA titration.		
			4. To find the PH of an unknown solution by comparing color of a		
			series of HCl solutions + 1 drop of methyl orange, and a similar series		
			of NaOH solutions + 1 drop of phenolphthalein.		
			5. To determine the rate constant for the acid catalysed hydrolysis of an		
			ester.		
			6. Determination of the strength of the H ₂ O ₂ sample.		
			7. To determine the solubility of a sparingly soluble salt, e.g. KHTa		
			(one bottle)		

CBCS

Semester	Progra -mme	Course and Name of the Paper	Topic	No. Of hours
	Hons	CC1-2-TH: PHYSICAL CHEMISTRY-1, ORGANIC CHEMISTRY-1B	Kinetic Theory and Gaseous state	20
	Gen	CC1/GE1 TH	Kinetic Theory of Gases and Real gases	7
			Liquids	6
		CC1/GE1 P	Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.	45
1			2. Estimation of oxalic acid by titrating it with $KMnO_4$.	
			3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO ₄ .	
			4. Estimation of Fe (II) ions by titrating it with $K_2Cr_2O_7$ using internal indicator.	
			5. Estimation of Cu (II) ions iodometrically using $Na_2S_2O_3$.	
			6.Estimation of Fe(II) and Fe(III) in a given mixture using $K_2Cr_2O_7$ solution.	
2	Gen	CC/GE 2	Chemical Equilibrium:	7
			Solutions	5
			Phase Equilibria	5
			Solids	5
		CC/GE 2 P	Study of kinetics of acid-catalyzed hydrolysis of methyl acetate	45
			2. Study of kinetics of decomposition of H_2O_2 (Clock Reaction)	
			3. Study of viscosity of unknown liquid (glycerol, sugar) with respect to water.	
			4. Determination of solubility of sparingly soluble	

	salt in water, in electrolyte with common ions and	
	in neutral electrolyte (using common indicator)	
	5. Preparation of buffer solutions and find the pH of	
	an unknown buffer solution by	
	colour matching method	
	6. Determination of surface tension of a liquid using	
	Stalagmometer	
	2.Spectroscopy	

Lesson Plan for 2018-19; Teacher: Dr. Soumavo Ghosh, Department of Chemistry

1st year: Semester-1 and semester-2 (Under CBCS):

Semester	Progra	Course and	Topic	Sessio	No. Of
	-mme	Name of the		n	lectures
		Paper			
1	Hons	CC1-1-TH:	Acid-Base reactions: Thermodynamic		6
		INORGANIC	acidity parameters, Drago-Wayland		
		CHEMISTRY-1,	equation. Superacids, Gas phase acidity		
			and proton affinity; HSAB principle.Acid-		
			base equilibria in aqueous solution	Jul-	
			(Proton transfer equilibria in water), pH,	Dec	
			buffer. Acid-base neutralisation curves;		
			indicator, choice of indicators.		
			Redox reactions		14
			er of hours for CC 1-1 (Theory+Practical) Jul-		20T + 0P
	Gen	CC1/GE1 TH	Chemical Periodicity	Jul-	7
			Acids and bases	Dec	3
		CC1/GE1 P	1. Estimation of sodium carbonate and		
			sodium hydrogen carbonate present in a		
			mixture.		
			2. Estimation of oxalic acid by titrating it	Jul-	
			with KMnO ₄ .	Dec	22.5
			3. Estimation of water of crystallization in		
			Mohr's salt by titrating with KMnO ₄ .		
			4. Estimation of Fe (II) ions by titrating it		
			with K ₂ Cr ₂ O ₇ using internal indicator.		
			5. Estimation of Cu (II) ions iodometrically		
			using Na ₂ S ₂ O ₃ .		
			6.Estimation of Fe(II) and Fe(III) in a given		
			mixture using K ₂ Cr ₂ O ₇ solution.		
			of hours for CC-1/GE-1 (Theory+Practical) Ju		10T + 22.5P
2	Hons	CC-2-4-TH	Chemical Bonding-I	Jan-	20
		INORGANIC CHEMISTRY-2	Radioactivity	Jun	10
			l hours for CC 2-4 (Theory+Practical) Jan-Jun	<u> </u>	30T + 0P
	Gen	CC/GE 2 TH	Error Analysis and Computer Applications	Jan-	10
			Redox reactions	Jun	10
		CC/GE 2 P	1. Study of kinetics of acid-catalyzed		
			hydrolysis of methyl acetate		
			2. Study of kinetics of decomposition of	Jan-	22.5
			H ₂ O ₂ (Clock Reaction)	Jun	
			3. Study of viscosity of unknown liquid		
			(glycerol, sugar) with respect to water.		
			4. Determination of solubility of sparingly		
			soluble salt in water, in electrolyte with		

common ions and in neutral electrolyte (using common indicator) 5. Preparation of buffer solutions and find the pH of an unknown buffer solution by colour matching method 6. Determination of surface tension of a liquid using Stalagmometer	207. 22.50
Total number of hours for CC-2/GE-2 (Theory+Practical) Jan-Jun	20T + 22.5P

2nd and 3rd year (Honours) Theory (under 1+1+1 2016 system); Session 2018-19; Dr. Soumavo Ghosh

Year	Paper	Unit	Торіс	No. of lectures	Session
2(H)	IVA	CHT 21a Unit I	General trends of variation of electronic configuration, elemental forms, metallic nature, magnetic properties (if any), catenation and catalytic properties (if any), oxidation states, inert pair effect (if any), aqueous and redox chemistry in common oxidation states, properties and reactions of important compounds such hydrides, halides, oxides, oxyacids(if any), complex chemistry (if any) in respect of the following elements: (i) s-block elements: Li-Na-K, Be-Mg-Ca-Sr-Ba. (ii) p-block elements: B-Al-Ga-In-Tl, C-Si-Ge-Sn-Pb, N-P-As-Sb-Bi, O-S-Se-Te, F-Cl-Br-I, He-Ne-Ar-Kr-Xe	15	July to Pre- puja
		CHT 21b Unit II	Solubility product principle, common ion effect and their applications to the precipitation and separation of common metallic ions as hydroxides, sulfides, phosphates, carbonates, sulfates and halides. Ion-electron method of balancing equation of redox reaction. Elementary idea on standard redox potentials withsign conventions, Nernst equation (without derivation). Influence of complex formation, precipitation and change ofpH on redox potentials; formalpotential.	Total 20 7 8 Total 15	post- Puja to Wint er vacation
			Feasibility of a redox titration, redox potential at the equivalence point, redox indicators. Redox potential diagram(Latimer and Frost diagrams) of common elements and their applications. Disproportionation and comproportionation reactions (typical examples).	15 Total 15	post- Winter Vacati on to Test exam- ination

Year	Paper	Unit	Topic	No. of lectures	Session
3	V	CHT 31b Unit I	18-electron rule and its applications to carbonyls (including carbonyl hydrides and carbonylates), nitrosyls, cyanides, and nature of bonding involved therein. Simple examples of metal-metal bonded compounds and metal clusters.	5	July to Pre- puja
			Metal-olefin complexes: Zeises salt (preparation, structure and bonding), Ferrocene (preparation, structure and reactions). Hapticity(η) of organometallic ligands, examples of mono tri and penta-hapto cyclopentadienyl complexes.	5	
			Simple examplesof fluxional molecules. Coordinative unsaturation: oxidative addition and insertionreactions. Homogeneous catalysis by organometallic compounds: hydrogenation, hydroformylation and polymerization of alkenes (Ziegler-Natta catalysis).	5	
		CHT 31b Unit II	Elements of life: essential major, trace and ultratrace elements. Basic chemical reactions in the biological systems and the role of metal ions (specially Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Fe ^{3+/2+} , Cu ^{2+/+} and Zn ²⁺). Metal ion transport across biological	3	
			membrane: Na ⁺ -ionpump, ionophores. Biological functions of hemoglobin and myoglobin, cytochromes and ferredoxins,	6	
			carbonate bicarbonate bufferingsystem and carbonic anhydrase. Biological nitrogen fixation, Photosynthesis: Photosystem-I and Photosystem-II.	Total 24	
			Toxic metal ions and their effects, chelation therapy (examples only), Pt and Au complexes as drugs (examplesonly), metal dependent diseases.	2	Post Puja to Winter vacation
		CHT 31c Unit I	Electrochemical methods: Conductometry, Potentiometry, pH-metry. Electrogravimetry, Coulometry.	3	
			Spectrophotometry: Lambert-Beer law, Limits to Beer'slaw, Principle of	2	
			spectrophotometric estimation of iron, manganese and phosphorous. Principles and instrumentations of atomic	3	

	absorption andatomic emission spectrometry; estimation of sodium and potassium in water samples. Ion exchange resins and their exchange capacities, principle and simple applications of ionexchange separation. Chromatographic separations: General description and classification of chromatographic methods, thin layer, paperand column chromatographic techniques and their simple applications, Rf-values and their significance, elution in column chromatography, migration rates of solutes, band broadening and	5 Total 15	
CITE	column efficiency, column resolution.	0	
CHT 31c Unit II	Errors in chemical analysis: Accuracy and precision of measurements, determinate indeterminate, systematic and random errors in chemical analysis with examples, absolute and relative errors; source, effect and detection of systematicerrors; distribution of random errors, normal error curve, standard deviations, standard deviation of calculated results-sum or difference, product or quotient, significant figures, rounding and expressing results of chemical computations. Principles for determination of BOD, COD, DO, TDS, in water samples. Detection and estimation of As, Hg, Cd, Pb, NH ⁴⁺ , and F, NO ³⁻ ,	7 Total 15	post- Winter vacatio n to Test exam- ination
	NO ²⁻ in water sample. Detection, collection and principles of estimation of CO, NOx, SO ₂ , H ₂ S and SPMin air samples.		

2nd and 3rd year (Honours) Practical (under 1+1+1 2016 system); Session 2018-19; Dr. Soumavo Ghosh

Year	Paper	Unit	Topic	No. of	Session
				lectures	
2	IVB	CHP	 Iodometry/iodimetry: Vitamin C. Permanganometry: Fe^{III} and Mn^{II} in a mixture. 	3x10	July to
		24a	2. Permanganometry: Fe ^{III} and Mn ^{II} in a mixture.		Pre-
			3. Dichromatometry: Fe ^{III} and Cu ^{II} in a		puja
			mixture; Fe ^{III} and Cr ^{III} in a mixture.		
			4. Complexometry (EDTA): CaCO ₃ and MgCO ₃		
			in mixture; Mg ^{II} and Zn ^{II} in mixture.		
		CHP	Analysis of at least 6 unknown samples by each	3x10	
		24a	student		
				Total 60	
		-		0	post-Puja to
					Test
					examination

Year	Paper	Unit	Topic	No.	Session
				of	
				lectures	
3	-	1		0	July to
					Pre-
					puja
		-		0	post-Puja to
					Test
					examination

2nd and 3rd year (General) Theory (under 1+1+1 2016 system); Session 2018-19; Dr. Soumavo Ghosh

IIA	CGT 22b Unit I	Acids-bases and solvents: Modern aspects of acids and bases: Arrhenius theory, theory of solvent system, Bronsted and Lowry's concept, Lewis concept with typical examples, applications and limitations. Strengths of acids and bases (elementary idea).	15	July to Pre- puja
		Ionization of weak acids and bases in aqueous solutions, application of Ostwald's dilution law, ionization constants, ionic product of water, pH-scale, buffer solutions and their pH values, buffer actions; hydrolysis of salts. Solutions of electrolytes: Electrolytic conductance, specific conductance, equivalent conductance and molar conductance of electrolytic solutions. Influence of temperature and dilution on weak electrolytes.	al	
	-	-	0	post- Puja to Winter vacation post- Winter vacation to Test exam-
		-		electrolytes. 0

Year	Paper	Unit	Topic	No. of lectures	Session
3	IVA	CGT 31a Unit I	Gravimetric Analysis: Solubility product and commonion effect. Requirements of gravimetry. Gravimetric estimation of chloride, sulphate, lead, barium, nickel, copper and zinc. Volumetric Analysis: Primary and secondary standardsubstances, principles of acid-base, oxidation – reduction, and complexometric titrations; acid-base, redox and metal-ion indicators. Principles of estimation of mixtures of NaHCO ₃ and Na ₂ CO ₃ (by acidimetry); iron, copper, manganese, chromium (by redox titration); zinc, aluminum, calcium, magnesium	5 5 Total 16	July to Pre- puja
		CGT 31a	(by complexometric EDTA titration). Chromatographic methods of analysis: columnchromatography and thin layer chromatography. Accuracy and precision of quantitative analysis, determinate-, indeterminate-,	3	post- Puja to Winter vacation
		Unit II	systematic- and random-errors. Methods of least squares and standard deviations.	2 Total 8	
			General introduction to computers, different components of a computer, hardware and software, input and output devices, binary numbers and arithmetic. Introduction to computer languages, programming and operating systems.	Total 6	post- Winter vacation to Test exam- ination

2nd and 3rd year (General) Practical (under 1+1+1 2016 system); Session 2018-19; Dr. Soumavo Ghosh

Year	Paper	Unit	Topic	No.	Session
				of lectures	
2	IIIB	CGP 24	Qualitative Analysis of Inorganic Mixtures: Experiments A: Preliminary Tests for Acid and Basic radicals in given samples. Experiments B: Wet tests for Acid and Basic radicals in given samples. Experiments C: Confirmatory tests. Acid Radicals: Cl ⁻ , Br ⁻ , Γ, NO2 ¹⁻ , S ²⁻ , SO4 ²⁻ , PO4 ³⁻ , BO3 ³⁻ , H ₃ BO ₃ . Basic Radicals: Na ⁺ , K ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Cr ³⁺ , Mn ²⁺ , Fe ³⁺ , Ni ²⁺ , Cu ²⁺ , NH ₄ ⁺ .	11x3 Total 33	July to Pre- puja
		CGP 24	Analysis of at least 6 unknown samples by each student	6x3 Total 18	post-Puja to Winter vacation
		CGP 24	Analysis of at least 6 unknown samples by each student	6x3 Total 18	post-Winter vacation to Test examination
3	-	-	-	0	July to Pre- puja
		-	-	0	post-Puja to Winter vacation
		-	-	0	post-Winter vacation to Test examination

Lesson Plan: Department of Chemistry 2018-2019 Dr. Sharmila Bhattacharya

Semest er/B. Sc. (1 +1+1)	Progra mme	Course and Name of the Paper		Topic			No. Of hours		
Sem-1	Hons	CC1-1-TH: INORGANIC CHEMISTRY		Extra nuclear Structure Acid-Base reactions	14 6				
	-1 CC1-1-P			INORGANIC CHEMISTRY	': I (1) LAB: /	Acid and Base	30		
		332 2 .		Titrations and Oxidatio					
	Gen			Total number of hou	rs for CC1-1	(Theory+Practical)	20T + 30P		
	Gen	CC1/GE1 TH		Ato	7				
				Aci	3				
				Total number of hours	10				
				Chemical Bonding-II			30		
Sem-2	Hons	CC-2-4-P		Iodo-/ Iodimetric Titrati content in some selectiv		tion of metal	45		
				Total number of hours for		heory+Practical)	30T + 45P		
Year	Paper	Unit	To	opic	No. of lectures	Session			
3 Hons	V CHT 31a	I		hemistry of pordination compounds	20	July to pre-puja			
	СНТ	II	bl	hemistry of d- and f- lock elements ravimetric and	4	Post-puja to Text B	Fyamination		
	31d		ti	trimetric method of nalysis		, , , , , , , , , , , , , , , , , , ,			
		II		hermodynamics of issolution	8				
2 Hons	IVA CHT 21a	II	o	ther types of bonding		July to pre-puja			
	CHT 21b	I	Other types of bonding and Chemistry of s and p block elements Chemistry of s and p						

			block elements		Examination
	IVB CHP		(i) lodometric/lodim etry:	4	July to pre-puja
	24a	1	Vitamine C (ii) Permanganometr y: Fe ³⁺ and Mn ²⁺ in a mixture	8	
			(iii) Dichromatometry : Fe ³⁺ and Cu ²⁺ in a		Post puja to winter recess
			mixture; Fe ³⁺ and Cr ⁶⁺ in a mixture	16	
			(iv) Complexometry (EDTA): CaCO₃ and MgCO₃ in a mixture; Mg²+ and Zn²+ in a mixture		Post winter recess to Test Examination
3 Gen	IVA CGT	ı	Environmental chemistry		July to pre-puja
	31c		Environmental chemistry		Post-puja to Test Examination
	CGP 32		(i) Estmation of Na₂CO₃ and NaHCO₃ in a mixture (ii) Estmation of HCl		July to Test Examination
			and CH₃COOH in a mixture		
			(iii) Determination of total hardness of		
			water by EDTA titration		
			(iv) To find the pH of an unknown solution by		
			comparing		

				1
		colour		
		(v) Determination of		
		rate constant		
		for the acid		
		catalysed		
		hydrolysis of		
		an ester		
		(vi) Determination of		
		strength of		
		H ₂ O ₂ sample		
		(vii) Determination		
		of solubility		
		-		
CGT	1		4	July to pre-puja
21b		Principles of qualitative		, , , , , , , , , , , , , , , , , , , ,
	11	and game and game	4	Post-puja to winter recess
		Basic inorganic chemistry	-	1 000 page 10 1111100 1 00000
CGP	III	Zasie inerganie direinistry	60	July to Test Examination
		Qualitative analysis of		July to rest Examination
T		_		
		morganic mixture		
	CGT 21b CGP 24	21b II CGP III	rate constant for the acid catalysed hydrolysis of an ester (vi) Determination of strength of H ₂ O ₂ sample (vii) Determination of solubility of a sparingly soluble salt CGT I Principles of qualitative inorganic analysis II Basic inorganic chemistry	rate constant for the acid catalysed hydrolysis of an ester (vi) Determination of strength of H ₂ O ₂ sample (vii) Determination of solubility of a sparingly soluble salt CGT I Principles of qualitative inorganic analysis II Basic inorganic chemistry CGP III Qualitative analysis of