Lesson Plan - Honours (AY 2019-20)

Name: Dr. Pratibha Pal

Department: Physics

Year	Paper	Unit	Торіс	No. of lectures	Session
			6. Elasticity a) Relation between Elastic constants. Twisting Torque on a cylinder or wire. Bending of a beam. Internal bending moment. Elastic Potential Energy.	8 Lectures	
			7. Fluid Motion a) Kinematics of Moving Fluids: Idea of compressible and incompressible fluids, equation of Continuity; Streamline and Turbulent Flow, Reynold's Number.	6 Lectures	July to Pre- Puja
Sem	CC2				
1			7. Fluid Motion (Contd.) Euler's equation. The special case of Fluid statistics F = grad P. Simple applications.	4 Lectures	Post-Puja to End Sem
			b) Poiseuille's equation for flow of a viscous liquid through a Capillary Tube.	3 Lectures	
			<i>1. Oscillations</i> a) SHM: Simple Harmonic Oscillations. Differential Equation of SHM and its solution. Kinetic energy, Potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance: nower dissipation and Quality factor	8 Lectures	
Sem II	CC4		 2. Superposition of Harmonic Oscillations a) Superposition of Collinear Harmonic oscillations: Linearity and Superposition Principle. Superposition of two collinear oscillations having 1) equal frequencies and 2) different frequencies(Beats). Superposition of N collinear oscillations having 1) equal phase difference and 2) equal frequency difference. 	8 Lectures	
			 3. Wave motion a) Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane progressive waves. Wave equation. Particle and wave velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. b) Water Waves: Ripple and Gravity Waves. 	7 Lectures	Jan-June
			 4. Velocity of Waves a) Velocity of Transverse Vibrations of Stretched Strings. b) Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction. 	5 Lectures	
			 5. Superposition of Harmonic Waves a) Standing waves in a String. Fixed and Free Ends. Analytical Treatment. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. b) Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. c) Superposition of N Harmonic Waves. Phase and Group Velocities. 	8 Lectures	

Year	Paper	Unit	Торіс	No. of lectures	Session	
			 Introduction to Thermodynamics a) Zeroth and First Law of Thermodynamics: Extensive and intensive Thermodynamic Variables, Thermodynamic Equilibrium, ZerothLaw of Thermodynamics & Concept of Temperature. Concept of Work & Heat, State Functions, Internal Energy and First Law of Thermodynamics. Its differential form, First Law & various processes. Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient. 	8 Lectures		
			b) Second Law of Thermodynamics: Reversible and Irreversible processwith examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence.	6 Lectures	July to Pre-	
Sem	CC6		c) Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to PerfectGas Scale.	4 Lectures	Puja	
III			d) Entropy: Concept o Inequality, Second Lav Entropy. Entropy of a Entropy. Entropy Char processes with exampl Changes in Reversible Increase of Entropy. T Third Law of Thermoo Zero.	d) Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Entropy Changes in Reversible and Irreversible Processes. Principle of Increase of Entropy. Temperature-Entropy diagrams for Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero.	8 Lectures	
			2. Thermodynamic Potentials a) Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling	6 Lectures		
			 Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations b) Maxwell's Thermodynamic Relations. c) Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) Clausius Clapeyron equation, (2) 	2 Lectures	Post-Puja toEnd Sem	
			Values of C_p - C_v , (3) TdS Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process.	4 Lectures		
			Joules Experiment. Free Adiabatic expansion of a perfect gas. Joule-Thomson porous plug experiment. Joule-Thomson effect for Real and Van der Waal gases. Temperature of Inversion. Joule-Thomson cooling.	3 Lectures		

Year	Paper	Unit	Торіс	No. of lectures	Session
			Elements of Modern Physics Unit 1. a) Blackbody Radiation, Planck's quantum, Planck's constant. Photo- electric effect and Compton scattering - light as a collection of pho- tons. Davisson-Germer experiment. De- Broglie wavelength and matter waves. Wave-particle duality. Wave description of particles by wave packets. Group and Phase velocities and relation between them. Probability interpretation: Normalized wave functions as probability amplitudes	8 Lectures	
Sem	CC9		b)Two-Slit experiment with photons and electrons. Linear superposition principle as a consequence.	2 Lectures	
IV			c) Position measurement- gamma ray microscope thought experiment. Heisenberg uncertainty principle (Statement with illustrations). Impossibility of a particle following a trajectory.	4 Lectures	
			Unit 2 a) Postulates of Quantum Mechanics: States as normalized vectors (normalized wave functions). Dynamical variables as linear Hermitian operators. Predictions of quantum mechanics from solving the eigen- value equation for the observables. Illustration using two and three level systems. Expectation values of observables.	6 Lectures	Jan - June
			b) Time evolution: Schrodinger equation for non- relativistic particles. Stationary states. Solution of Schrodinger's equation using expansion in stationary states. Time evolution of expectation values.	3 Lectures	
			c) Application to one dimensional systems. Particle moving in one dimension: Position, Momentum and Energy operators. Probability and probability current densities in one dimension. Boundary conditions on wave functions. Ehrenfest theorem. Particle in a one dimensional infinitely rigid box: energy eigen-values and eigen-functions, normalization. Quantum dot. Quantum mechanical scattering and tunneling in one dimension across a step potential & rectangular potential barrier.	6 Lectures	
			d) Simultaneous measurements: Compatible and incompatible observables and their relation to commutativity. Heisenberg's uncertainty relation for a pair of incompatible observables. Complete and incom- plete measurements - degeneracy. Illustration of the ideas using the Angular momentum operators.	4 Lectures	

		Unit 3		
		a) Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle.	3 Lectures	
		b) Nature of nuclear force, NZ graph.	1 Lecture	
		c) Nuclear Models: Liquid Drop model. semi- empirical mass formula and binding energy. Nuclear Shell Model. Magic numbers.	3 Lectures	
		Unit 4		
		a) Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus.	5 Lectures	
		b) Fission and fusion: mass de cit, relativity and generation of energy. Fission - nature of fragments and emission of neutrons. Nuclear re- actor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions)	5 Lectures	
		Renewable Energy and Energy Harvesting		
Sem IV	PHSA- SECB- TH	Fossil fuels and Alternate Sources of energy Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.	Lectures 6	Jan - June
		Solar energy Solar energy, its importance, storage of solar energy, solar pond, non- convective solar pond, applications of solar pond and solar energy, solar water heater, at plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.	Lectures 6	

Paper	Unit	Торіс	No. of lectures	Session
PHSA- SECB- TH		 Wind Energy harvesting Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. Ocean Energy Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass. 	Lectures 3 Lectures 4	Jan - June
VI	Ι	 NUCLEAR & PARTICLE PHYSICS I <i>I.Bulk properties of nuclei</i> Nuclear mass, charge, size, binding energy, spin and magnetic moment. Isobars, isotopes and isotones; mass spectrometer (Bainbridge). <i>2. Nuclear structure</i> Nature of forces between nucleons, nuclear stability and nuclear binding, the liquid drop model 11 (descriptive) and the Bethe-Weizsacker mass formula, application to stability considerations, extreme single particle shell model (qualitative discussion with emphasis on phenomenology with examples). <i>3. Unstable nuclei</i> (a) Alpha decay : alpha particle spectra – velocity and energy of alpha particles. Geiger-Nuttal law. (b) Beta decay : nature of beta ray spectra, the neutrino, energy levels and decay schemes, positron emission and electron capture, selection rules, beta absorption and range of beta particles, Kurie plot. (c)Gamma decay : gamma ray spectra and nuclear energy levels, isomeric states. Gamma absorption in matter – photoelectric process, Compton scattering, pair production (qualitative). 	5+ 1(Tutorial) 9 + 2 (Tutorial) 3+1 (Tutorial) 4 + 1 (Tutorial) 4+ 1(Tutorial)	July to Pre- Puja
	Paper PHSA- SECB- TH VI	PaperUnitPHSA- SECB- THI	PaperUnitTopicPhaperUnitTopicWind Energy harvesting Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies.PHSA- SECB- THOcean Energy Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. Tide characteristics and Statistics, Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass.NUCLEAR & PARTICLE PHYSICS I I.Bulk properties of nuclei Nuclear mass, charge, size, binding energy, spin and magnetic moment. Isobars, isotopes and isotones; mass spectrometer (Bainbridge).VIIII.Bulk properties of nuclei Nuclear structure Nature of forces between nucleons, nuclear stability and nuclear binding, the liquid drop model 11 (descriptive) and the Bethe-Weizsacker mass formula, application to stability considerations, extreme single particle shell model (qualitative discussion with emphasis on phenomenology with examples).J. Unstable nuclei (a) Alpha decay : alpha particle spectra – velocity and energy levels and decay schemes, positron emission and electron capture, selection rules, beta absorption and range of beta particles, Kurie plot.(c)Gamma decay : gamma ray spectra and nuclear energy levels, isomeric states. Gamma absorption in matter – photoelectric process, Compton scattering, pair production (qualitative).	PaperUnitTopicNo. of lecturesPhysicWind Energy harvesting Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies.Lectures 3PHSA- SECB- THOcean Energy Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass.Lectures 4VINUCLEAR & PARTICLE PHYSICS I I.Bulk properties of nuclei Nuclear mass, charge, size, binding energy, spin and magnetic moment. Isobars, isotopes and isotones; mass spectrometre (Bainbridge).5+ 1(Tutorial)VII.Nuclear structure Nature of forces between nucleons, nuclear stability and nuclear studie the Bethe-Weiszacker mass formula, application to stability considerations, extreme single particle shell model (qualitative discussion with emphasis on phenomenology with examples).9+ 2 (Tutorial)VII.Unstable nuclei (a) Alpha decay : alpha particle spectra – velocity and energy of alpha particles. Geiger-Nuttal law.3+11 (Tutorial)(b) Beta decay : antare of beta ary spectra, the neutrino, energy levels, isomeric states. Gamma absorption in matter – photoelectric process, Compton scattering, pair production (qualitative).4+ 1 (Tutorial)

Year	Paper	Unit	Торіс	No. of lectures	Session
			 NUCLEAR & PARTICLE PHYSICS II <i>1. Nuclear reactions</i> Conservation principles in nuclear reactions. Q-values and thresholds, nuclear reaction cross-sections, examples of different types of reactions and their characteristics. Bohr's postulate of compound nuclear reaction, Ghoshal's experiment. <i>2. Nuclear fission and fusion</i> Discovery and characteristics, explanation in terms of liquid drop model, fission products and energy release, spontaneous and induced fission, transuranic elements. Chain reaction and basic principle of nuclear reactors. Nuclear fusion: energetics in terms of liquid drop model. <i>3. Elementary particles</i> (a) Four basic interactions in nature and their relative strengths, examples of different types of interactions. Quantum numbers – mass, charge, spin, isotopic spin, intrinsic parity, hypercharge. Charge conjugation. Conservation laws. (b) Classifications of elementary particles – hadrons and leptons, baryons and mesons, elementary ideas about quark structure of hadrons. 	5 + 1 (Tutorial) 5 + 1 (Tutorial) 3 + 1 (Tutorial) 4 + 1 (Tutorial)	Post-Puja to Winter vacation.
			families.		
III (1+1 +1)	VI	I	 NUCLEAR & PARTICLE PHYSICS II 4. Particle Accelerator and Detector Cyclotron – basic theory, synchrotron, GM counter 5. Nuclear Astrophysics Primordial nucleosynthesis, energy production in stars, pp chain, CNO cycle. Production of elements (qualitative discussion) 	3 + 1 (Tutorial) 6 + 1 (Tutorial)	Post-Winter Vacation to Test examination

Lesson Plan - General

Name:

Dr. Pratibha Pal

Department: Physics

Year	Paper	Unit	Торіс	No. of lectures	Session
1st Sem (CBCS)	GE1/CC1		 Elasticity a) Hooke's Law: Stress-Strain diagram. Elastic moduli-relation between elastic constants- Poisson's Ration-expression for Poisson's ratio in terms of elastic constants. b) Twisting couple on a cylinder - determination of Rigidity modulus by static torsion. Torsional 	7 Lectures 4 Lectures	July to Pre- Puja
			by state torsion. Forsional pendulum.c) Bending of beam.d) Work done in stretching and work done in twisting a wire.	3 Lectures 3 Lectures	Post Puja to End Sem
Sem III (CBCS)	GE3/CC3		1. Laws of Thermodynamics a) Thermodynamic description of system: Zeroth Law of Thermodynamics and temperature. First Law and internal energy, conversion of heat into work, Various Thermodynamical processes, Applications of First Law: Relation between C_p and C_v , work done during Isothermal and Adiabatic Processes. Compressibility and Expansion coefficients, Reversible and Irreversible Processes, Second Law and Entropy. Carnot's cycle, Carnot's theorem. Entropy changes in reversible and irreversible processes. Entropy- Temperature diagrams, Third Law of Thermodynamics, unattainability of absolute zero	12 Lectures	July to Pre- Puja
			2. Thermodynamic Potentials a) Enthalpy, Gibb's, Helmholtz and Internal Energy functions, Maxwell's relations and applications - Joule-Thomson effect, Clausius-Clayperon Equation. Expression for $(C_p - C_v)$, C_p / C_v , TdS equations.	4 Lectures	Post Puja to End Sem

Year	Paper	Unit	Торіс	No. of lectures	Session
Sem IV			 Superposition of Two Collinear Harmonic oscillations: a) Linearity and Superposition Principle. Superposition of two collinear oscillations having 1) equal frequencies and 2) different frequencies (Beats). 	4	
(CBCS)	GE4/CC4		 2. Superposition of Two Perpendicular Harmonic oscillations: a) Graphical and Analytical Methods. Lissajous Figures with equal and unequal frequency and their uses. 	2	
			3. Wave Motion - General a) Transverse waves on a string. Travelling and standing waves on a string. Normal modes of a string. Group velocity, Phase Velocity. Plane waves, Spherical wave, Wave Intensity.	4	
			4. Sound a) Review of SHM, damped and forced vibrations-resonance. Fourier's Theorem - Applications to Saw tooth and square wave. Intensity and loudness of sound - Decibel- Intensity levels. Musical notes-Musical scale. Acoustics of buildings : reverberation and time reverberation - Absorption coefficient - Sabine's formula - measurement of reverberation time- acoustics aspects of halls and auditoria.	6	Jan - June
3rd year (1+1+1)	IVA	П	2. Conventional energy sources : thermal power plant, relevance of Rankinecycle (qualitative discussion), steam turbine, hydro- electric power plant - - basic principle.	6	July to Pre- Puja
		Ш	3. Non-conventional energy sources: solar, wind, tidal, geothermal, and biogas sources, elementary idea of production and uses.	6	Post- Puja to Winter vacation.

Lesson Plan - Honours

Name: GAYATRI PAL

(AY 2019-2020)

Department: PHYSICS

Year	Paper	Unit	Торіс	No. of lectures	Session
			1. Fundamentals of Dynamics	icetui es	
1st			a) Review of Newton's Laws: Mechanistic view of the Universe. Concepts of Inertial frames, force and mass. Solution of the equations of motion (E.O.M.) in simple force fields in one, two and three dimensions using Cartesian, cylindrical polar and	5	
Sem (C BC S)	CC2		 b) Dynamics of systems of particles: Difficulty of solving the E.O.M. for systems of particles. Newton's third Law. External and Internal forces. Momentum and Angular Momentum of a system. Torque acting on a system. Conservation of Linear and Angular Momentum. Centre of mass and its properties. Two-body problem. c) Variable- mass system: motion of angular 	5	July to Pre- Puja
			rocket.	2	
			 2. Work and Energy a) Work - Kinetic Energy Theorem. Conservative Forces: Force as the gradient of a scalar field - concept of Potential Energy. Other equivalent definitions of a Conservative Force. Conservation of Energy. b) Qualitative study of one dimensional matter form entropy 	5 3	
			energy curves. Stable and Unstable equilibrium.	2	
			3. Gravitation and Central Force Motion a)Central Force. Reduction of the two body central force problem to a one- body problem. Setting up the E.O.M. in plane polar coordinates. b)Differential equation for the path. Motion under an Inverse-square force. Newton's Law of Gravitation. Inertial and gravitational mass. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). c)Gravitational potential energy.	4 5	Post-Puja to End Sem
			shell and solid sphere.	5	

Year	Paper	Unit	Торіс	No. of lectures	Session
2nd Sem	0.02		The Magnetostatic Field a) Biot-Savart's law. Force on a moving point charge due to a magnetic field: Lorentz force law. Application of Biot-Savart's law to determine the magnetic field of a straight conductor, circular coil. Force between two straight current carrying wires.	5	
(C BC S)	003		b) Divergence of the magnetic field - its solenoidal nature. Magnetic vector potential.	2	Jan - June
			c) Curl of the magnetic field. Ampere's circuital law. Its application to Infinite straight wire, (2) Infinite planar surface current, and (3) Solenoid.	4	
			Magnetic properties of matter.		
			a) Potential and field due to a magnetic dipole. Magnetic dipole moment. Force and torque on a magnetic dipole in a uniform magnetic field.	4	
			b) Magnetization. Bound currents. The magnetic intensity - H. Relation between B, H and M. Linear media. Magnetic Susceptibility and Permeability. Brief introduction of dia- , para- and ferro-magnetic materials. B-H curve and hysteresis.	5	
			Electro-magnetic induction		
			a) Ohms law and definition of E.M.F. Faraday's laws of electromagnetic induction, Lenz's law. Self-Inductance and Mutual Inductance. Reciprocity Theorem. Introduction to Maxwell's Equations. Charge conservation. Displacement current and resurrection of Equation of Continuity.	5	
			b) Energy stored in magnetic field.	2	

Year	Paper	Unit	Торіс	No. of	Session
				lectures	
			1. Integrated Circuits	í.	
			Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs.	6	
			2. Digital Circuits		
Sem 3 (CB CS)	CC7		Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers.	8	July to Pre- Puja
			3. Boolean algebra	6	
			De Morgan's Theorems. Boolean Laws. Simpli cation of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equiva- lent Logic Circuit by (1) Sum of Products Method and (2)	4	
			Karnaugh Map.		
			4. Data processing circuits Basic idea of Multiplexers, De- multiplexers, Decoders, Encoders.	4	
			5. Circuits		
			Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor.		

Year	Paper	Unit	Торіс	No. of lectures	Session
			6. Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race- around condi- tions in JK Flip-Flop. M/S JK Flip-Flop.	6	
Sem			 7. Timers IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. 8. Shift registers 	5	
(CBC S)	CC7		Serial-in-Serial-out, Serial-in-Parallel- out, Parallel-in-Serial-out and Parallel- in-Parallel-out Shift Registers (only up to 4 bits).	5	Post Puja to End Sem
			 9. Counters (4 bits) Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. 10. Computer Organization 	4	
			Input/Output Devices. Data storage (idea of RAM and ROM). Com- puter memory. Memory organization & addressing. Memory Inter- facing. Memory Map.	4	
Sem 4 (CBC S)	CC9		 1. Semiconductor Diodes P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Re- verse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. Current Flow Mecha- nism in Forward and Reverse Biased Diode. 	8	Jan - June

Year	Paner	U nit	Tonic	No of	Session
I cai	1 aper	Omt	Topic	locturos	56551011
			2 True touring Douring and their	lectures	
			2. Two-terminal Devices and their		
			Applications.		
			Rectifier Diode: Half-wave Recti ers.		
			Centre-tapped and Bridge Full-wave		
			Recti ers, Calculation of Ripple Factor	5	
			and Recti cation E ciency, C- Iter.		
			Zener Diode and Voltage Regulation.		
			Principle and structure of (1) LEDs (2)		
			Photodiode and (3) Solar Cell		
			3 Binalar Junction transistors n-n-n		
			and n n n Transistors Characteristics		
			and p-n-p fransistors. Characteristics		
			of CB, CE and CC Configurations.	_	
			Current gains α and β Relations	5	
			between α and β . Load Line analysis of		
			Transistors. DC Load line and Q-point.		
			Physical Mechanism of Current Flow.		
			Active, Cutoff and		
			Saturation Regions.		
			4.Field Effect transistors Basic	2	
			principle of operations only.	2	
Som			5 Amplifiers		
Sem			Amplifiers: Transistor Biasing and		T T
4	aca		Stabilization Circuits Fixed Bias and		Jan - June
	CC9		Voltage Divider Dieg. Transistor og 2		
(CBC			voltage Divider Blas. Transistor as 2-		
S)			port Network. n-parameter Equivalent		
			Circuit. Analysis of a single-stage CE		
			amplifier using Hybrid Model. Input		
			and Output Impedance. Current,		
			Voltage and Power Gains.		
			Classification of Class A, B & C		
			Amplifiers. Frequency response of a		
			CE amplifier.	10	
			Coupled Amplifier: Two stage RC-	10	
			coupled amplifier.		
			Feedback in Amplifiers. Effects of		
			Positive and Negative Feedback on		
			Input Impedance Output Impedance		
			Coin Stability Distortion and Noise		
			Gain, Stability, Distortion and Noise.		
			Sinusoidal Oscillators: Barkhausen's		
			Criterion for self-sustained oscillations.		
			RC Phase shift oscillator,		
			determination of Frequency. Hartley &		
			Colpitts oscillators.		
			Operational Amplifiers (Black Box		
			approach): Characteristics of an Ideal		
			and Practical Op-Amp. (IC 741) Open-		
			loop and Closed-loop Gain. Frequency		
			Response CMRR Slew Rate and		
			concept of Virtual ground		
			Applications of On Amps: Linear (1)		
			Inverting and non-inverting amplificant		
			(2) Addam (2) Subtraction (4)		
			(2) Adder, (3) Subtractor, (4)		
			Differentiator, (5) Integrator, (6) Log		
			amplifier, (/) Zero crossing detector (8)		
			Wein bridge oscillator. Non-linear (1)		
			inverting and non-inverting		
			comparators.		

			(2) Schmidt triggers.		
			(Weighted and R-2R Ladder).		
			Accuracy and Resolution. A/D		
			conversion (successive approximation)		
Year	Paper	Unit	Торіс	No. of lectures	Session
3	5	II	ATOMIC PHYSICS		
Hons			Atomic Spectrum		July to Dro Dujo
			Good quantum numbers, and selection rules. Stern- Gerlach experiment andspin as an intrinsic quantum number.	8	suly to file fuga
			Incompatibility of spin with classical ideas. Bohr- Sommerfeld model. Fine structure. Study of fine structure by Michelson interferometer.		
			Vector atom model		
			Magnetic moment of the electron, Lande g factor. Vector model – space quantization. Zeeman Effect : Explanation from vector atom model.	5	
			Many electron model		
			Pauli exclusion principle, shell structure. Hund's rule, spectroscopic terms of many electron atoms in the ground state.	3	
			Molecular spectroscopy		
			Diatomic molecules – rotational and vibrational energy levels. Basic ideas about molecular spectra.Raman effect and its application to molecular spectroscopy (qualitative discussion only).	4	
			Laser Physics		
			Population inversion, Einstein's A and B		

			coefficients; feedback of		
			energy on a resonator; 3-level	3	
			and 4-level systems.	C	
	_				~ .
Year	Paper	Unit	Topic	No. of	Session
			STATISTICAL MECHANICS	lectures	
			STATISTICAL MECHANICS		
			Microstates and macrostates		
			Classical description in terms of phase		
			space and quantum description in terms		
2nd		т	of wave functions. Hypothesis of equal	0	
Jru	7 A	1	apriori probability for incrostates of an	o	
year			Interactions between two systems –		
			thermal, mechanical and diffusive.		
			Statistical definition of temperature,		
			pressure, entropy and chemical		
			potential.		
			Partition function of a system in		
			thermal equilibrium with a heat bath.		
					Post-Puia to Test
			Classical statistical mechanics		examination)
			Maxwell-Boltzmann distribution law		chammation
			Calculation of thermodynamic		
			quantities for ideal monoatomic gases.		
				3	
			Motivations for quantum statistics	-	
			Cibbs' nonsday. Identical norticle and		
			Summetry requirement Derivation of		
			MB FD and BE statistics as the most		
			probable distri - butions (micro-	3	
			canonical ensemble). Classical limit of		
			quantum statistics.		
			Quantum statistical mechanics		
			Rosa Finstein statistics: Application to		
			radiation – Planck's law Rayleigh		
			Jeans and Wien laws as limiting cases		
			Stefan's law.		
			Fermi-Dirac statistics: Fermi		
			distribution at zero and non-zero		
			temperature Fermi energy and its	(
			expression in terms of particle density.	D	
			Degenerate and non- degenerate Fermi		
			gas. Electron specific neat of metals at		
			thermal		
			ionization and its application to		
			astrophysics.		

General

Name: Dr. Gayatri Pal Department: Physics

Year	Paper	Unit	Торіс	No. of	Session
				lectures	
1st Sem	GE1		Laws of Motion: a) Laws of Motion: Frames of reference. Newtow's laws of motion. Dynamics of system of particles. Conservation of momentum. Center of Mass.	8	July to Pre- Puja
(CBC S)			Work and Energy: Work- energy theorem. Conservative forces. Concept of potential energy. Conservation of Energy.	5	Post-Puja to End Sem
2nd Sem (CBC S)	GE2		MagnetismBiot-Savart's law and the Lorentz force law. Application of Biot- Savart's law to determine the magnetic eld of a straight conductor, circular coil, solenoid carrying current. Force between two straight current carrying wires.Divergence of the magnetic field. Magnetic vector potential. Curl of the magnetic field. Ampere's circuital law. Determination of the magnetic field of a straight current carrying wire. Potential and field due to a magnetic dipole. Magnetic fields inside matter: Magnetic fields inside matter: Magnetic intensity - H. Linear media. Magnetic susceptibility and Permeability. Brief introduction of dia-, para- and ferro-magnetic materials.Electromagnetic Induction Ohms law and definition of E.M.F.Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two	10 2 4	Jan - June
			cons. Energy stored in magnetic field.		

Year	Paper	Unit	Торіс	No. of	Session
2nd Sem (CBC S)	GE2		Maxwell's Equations and ElectromagneticWave PropagationEquation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic eld, electromagnetic wave propagation through vacuum and isotropic di- electric 	lectures 7	Jan - June
3rd Sem (CBC S)	GE3		Statistical Mechanics Phase space, Macrostate and Microstate. Ensemble - Ergodic hy- pothesis. PEAP, Entropy and Thermodynamic probability - Boltz mann hypothesis. Maxwell- Boltzmann law - distribution of velocity - Quantum statistics (qualitative discussion only) - Fermi-Dirac distribution law (statement only) - electron gas as an example of Fermi gas - Bose-Einstein distribution law (statement only) - photon gas as an example of Bose gas- comparison of three statistics.	6	Post Puja to End Sem

Year	Paper	Unit	Торіс	No. of lectures	Session
3	4 A	III	<i>Feedback :</i> Basic principle, positive and negative feedback, Barkhausen criterion, oscillator,	2	July to Pre-Puja
			OPAMP : characteristics, uses of OPAMP as amplifier, oscillator, and filter;	5	
			light-emitting diodes, 7-segment display, SCR, diac and triac.	2	
			. <i>Digital electronics :</i> combinational circuits adder and subtractor, multiplexer, demultiplexer, encoder, decoder, sequential circuits flip- flop, D and J-K, registers and counters.	5	
		III	<i>Instruments :</i> cathode-ray oscilloscope, digital multimeter, L and C measurements.	3	post-Puja to Test examination)

Lesson Plan (AY 2019-2020) Name:Dr. Subhendu Chandra Department: Physics Honours Course

Semester	Paper	Unit	Торіс	No. of	Session
				lectures	
			Vector Algebra and Vector Calculus:		July to Pre-Puja
			(a) Recapitulation of Vector Algebra. Idea of Inteal independence, completeness, basis and representation of vectors. Properties of vectors under rotations. Scalar product and its invariance under coordinate rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively.	8	
1Hons	PHS- A-CC- 1-1- TH		(b) Vector Differentiation: Scalar and Vector fields. Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities.	8	
			(c) Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs).	5	
			Orthogonal Curvilinear Coordinates: (d) Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Spherical and Cylindrical Coordinate Systems.	4	post- Puja to End Sem
211.000	PHS- A-CC-		Electrical circuits: AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit	5	January to June
2110115	2-3- TH		Network theorems: Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits.	5	

3 Hons	PHS- A-CC- 3-5- TH	 Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coe-cients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity. Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of functions in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality. 	12	July to Pre-Puja
3 Hons	PHS- A- SEC- A-TH	 Basic Electricity Principles: Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter and ammeter. Understanding Electrical Circuits: Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single-phase and three-phase alternating current sources. Rules to analyze AC sourced electrical circuits. Real, imaginary and complex power components of AC source. Power factor. Saving energy and money 	10 8	

		Flectrical Drawing and Symbols	5	
		a) Drawing symbols Blueprints Reading Schematics	5	
		a) Drawing symbols. Druppints. Reading Schematics.		
		Ladder diagrams. Electrical Schematics. Power		
		circuits. Control circuits. Reading of circuit schematics.		
		Tracking the connections of elements and identify		
		current flow and voltage drop.		
		Generators and Transformers:	3	
		(a) DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers.		
		Electric Motors:	5	
		(a) Single-phase, three-phase & DC motors. Basic		
		design. Interfacing DC or AC sources to control heaters		
		& motors. Speed & power of ac motor		
		Solid-State Devices:	2	
		(a) Resistors, inductors and capacitors. Diode and		
		rectifiers. Components in Series or in shunt. Response		
		of inductors and capacitors with DC or AC sources		
		Variational calculus in physics:		Post-
		Functionals Basic ideas of functionals Extremization		Puia to
		of action as a basic principle in mechanics	8	End Sem
	PHS_	I agrangianfomulation Fuler's equations of motion for	0	End Sem
	Δ -CC-	simple systems: harmonics oscillators simple		
3 Hons	3.5	pendulum spherical pendulum coupled oscillators		
	5-5- тц	Cyclic coordinates Symmetries and conservation laws		
	111	Legendre transformations and the Hamiltonian		
		formulation of machanica Congrical equations of		
		formulation of mechanics. Canonical equations of		
		motion. Applications to simple systems		
		Electrical Protection:		
		(a) Relays. Fuses and disconnect switches. Circuit		
		breakers. Overload devices. Ground-fault		
		protection.Page 97 Grounding and isolating. Phase	6	
		reversal. Surge protection. Interfacing DC or AC		
	PHS-	sources to control elements (relay protection device)		
2 11	A-			
3 Hons	SEC-	Liectrical wiring:		
	A-TH	(a) Different types of conductors and cables. Basics of		
		wiring - Star and delta connection. Voltage drop and	10	
		losses across cables and conductors. Instruments to	10	
		measure current, voltage, power in DC and AC circuits.		
		Insulation. Solid and stranded cable. Conduit. Cable		
		trays. Splices: wirenuts, crimps, terminal blocks, split		
		bolts, and solder. Preparation of extension board.		

4 Hons	РНS- А-СС- 4-8- ТН	Integrals Transforms:(a) Fourier Transforms: Fourier Integral theorem.Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations.	10	
		Introduction to probability: (a) Independent random variables: Sample space and Probability distribution functions. Binomial, Gaussian, and Poisson distribution with examples. Mean and variance.	5	

Year	Paper	Unit	Торіс	No. of	Session
				lectures	
			Crystal Structure: Crystalline and amorphous solids, translational symmetry. Elementary ideas about crystal structure, lattice and bases, unit cell, reciprocal lattice, fundamental types of lattices, Miller indices, lattice planes, simple cubic, f.c.c. and b.c.c. lattices. Laue and Bragg equations. Determination of crystal structure with X-rays.	10+3	July to Pre-Puja
3Hons	V	п	Structure of solids: Different types of bonding- ionic, covalent, metallic, van der Waals and hydrogen. Band theory of solids,Periodic potential and Bloch theorem, Kronig-Penny model, energy band structure. Band structure in Conductors, direct and indirect semiconductors and insulators (qualitative discussions); free electron theory of metals, effective mass, drift current, mobility and conductivity, Wiedemann-Franz law. Hall effect in metals: Phenomenology and implication.	15+2	
			Dielectric properties of materials: Electronic, ionic and dipolar polarizability, local fields, induced and oriented polarization– molecular field in a dielectric; Clausius-Mosotti relation.	4	

Magnetic properties of materials: Dia, para and ferro-magnetic properties of solids. Langevin's theory of diamagnetism and paramagnetism. Quantum theory of paramagnetism, Curie's law. Ferromagnetism: spontaneous magnetization and domain structure; temperature dependence of spontaneous magnetisation;Curie- Weisslaw, explanation of hysteresis.	11+3	Post- Puja to Test examinat ion
Lattice vibrations: Elastic and atomic force constants; Dynamics of a chain of similar atoms and chain of two types of atoms; optical and acoustic modes; interaction of light with ionic crystals. Einstein's and Debye's theories of specific heats of solids.	5+2	
Superconductivity: Introduction (Kamerlingh-Onnes experiment), effect of magnetic field, Type-I and type-II superconductors, Isotope effect. Meissner effect. Heat capacity. Energy gap. Ideas about High-Tc superconductors.	4+1	

General Course

Semester	Paper	Unit	Торіс	No. of	Session
				lectures	
	PHS-		Mathematical Methods		July to
1	G-CC-		(a) Vector Algebra: Vectors as directed line segments.		Pre-Puja
General	1-1-		Addition of vectors and multiplication by a scalar.	5	
	TH		Scalar and vector products. Basis and representation		
			of vectors.		
			(b) Vector Analysis: Derivatives of a vector with	5	
			respect to a parameter. Gradient, divergence and Curl.		
			Vector Analysis (Continued)		Post
			Vector integration, line, surface and volume integrals		Puja to
			of vector fields. Gauss'-divergence theorem and	5	End Sem
			Stoke's theorem of vectors (Statement only)		
	PHS-	1	1. Essential Vector Analysis		August
2	G-CC-		(a) Vector Algebra: Addition of vectors and		to Pre-
General	2-2-		multiplication by a scalar. Scalar and vector products		Puja
	TH		of two vectors. (b) Vector Analysis: Gradient,		Ŭ
			divergence and Curl. Vector integration, line, surface	5	

 1			,
	and volume integrals of vector fields. Gauss'divergence theorem and Stoke's theorem of		
	vectors (Statement only) and their significances.		
	 (a) Coulombs law, principle of superposition, electrostatic field. Electric field and charge density, surface and volume chargev density, charge density on the surface of a conductor. Force per unit area on the surface. 	7	
	 (b) Electric dipole moment, electric potential and field due to an electric dipole, force and Torque on a dipole. Electric Fields inside matter, Electric Polarisation, bound charges, displacement density vector, linear Dielectric medium, electric Succeptibility and Permittivity 	8	
	 (c) Divergence of the Electrostatic field, flux, Gauss's theorem of electrostatics, applications of Gauss theorem to find Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Gauss's theorem in dielectrics. (d) Curl of the Electrostatic Field. Conservative nature of electrostatic field, Introduction to electriostatic potential, Calculation of potential for linear, surface and volume charge distributions, potential for a uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Energy per unit volume in electrostatic field. 	`10	
	Electric Fields inside matter: Electric Polarisation. Bound charges. Displacement vector. Gauss's theorem in dielectrics. Linear Dielectric medium. Electric Succeptibility and Permittivity. Parallel plate capacitor completely filled with dielectric.	10	Post Puja to End Sem
	Linear Network: Impedance of L, C, R and their combinations. Thevenin& Norton's Theorem. Maximum power transfer theorem and superposition theorem. Anderson's bridge.	6	

Year	Paper	Unit	Торіс	No. of	Session
				lectures	
3 General	IVA	IV	Communications: Propagation of electromagnetic waves in atmosphere, various layers of atmosphere, ground andsky waves.	2	July to Pre-Puja
			Transmission of electromagnetic waves: Amplitude and frequency modulation, calculation ofpower in amplitude modulation, sideband generation in frequency modulated wave; demodulation, linear diode detector, detection of FM waves, signal-to-noise ratio.	5	
		IV	Transmission through media: coaxial cables, optical fibre cladding, energy loss, band width and channel capacity, information carrying capacity of lightwaves (qualitative); satellitecommunication, microwave link modem and internet	5	post- Puja to Test

Lesson Plan - Honours (AY 2019-20) Name: Dr. Shinjinee Das Gupta Department: Physics

Year/ Semes ter	Paper	Unit	Торіс	No. of lectures	Session
Sem I	РНS- А- СС- 1-1- ТН		First Order and Second Order Differential equations:First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of existence and Uniqueness Theorem for Initial Value Problems. Particular Integral.Calculus of functions of more than one variable:Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.	Lectures 10 Lectures 8	July to Pre- Puja
			Matrices Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Matrices. Transpose of a Matrix. Symmetric and Skew- Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-Singular matrices. Orthogonal and Unitary Matrices. Trace of a Matrix. Inner Product. Eigen-values and Eigenvectors. Cayley- Hamiliton Theorem.	Lectures 12	
Sem I	PHS- A- CC- 1-1- TH		Matrices contd. Diagonalization of Matrices. Solutions of Coupled Linear Ordinary Differential Equations. Functions of a Matrix.	Lectures 6	Post-Puja to End Sem Exam

Year	Paper	Unit	Торіс	No. of	Session
				lectures	
				Lectures	
			Wave Optics:	3	
			Electromagnetic Nature of Light. Definition and properties of wavefront. Huygen's Principle. Temporal and Spatial coherence. Interference	Lectures 10	
Sem II	PHS- A- CC- 2-4-		Division of amplitude and wavefront. Young's double slit experiment. Llyod's mirror and Fresenl's Biprism. Phase change on reflection and Stokes' treatment. Interference in Thin Films: parallel and wedge shaped films. Fringes of equal inclination and fringes of equal thickness. Newton's rings: measurement of wavelength and refractive index. Interferometer	Lectures 6	Jan - June
	TH		 a) Michelson Inteferometer: 1) Idea of form of fringes, 2) Determination of wavelength, 3) Wavelength difference, 4) Refractive Index and 5) Visibility of fringes. b) Fabry-Perot interferometer. 	Lectures 10	
			 a) Fraunhofer diffraction: Single slit. Circular apertures. Resolving power of a Telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating. b) Fresnel Diffraction : Fresnel's Assumptions. Fresnel's Half-period zone for plane wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple foci of a Zone Plate, Fresnel's Integrals, Fresnel's diffraction pattern of a straight edge, a slit and a wire. 	Lectures 10	

Year	Paper	Unit	Торіс	No. of	Session
	-			lectures	
			Kinetic Theory of Gases a) Distribution of velocities: Maxwell's velocity distribution law and its experimental verification. Doppler broadening of spectral lines and Stern's experiment. Mean,RVS and most probable speeds. Degrees of Freedom. Law of equi partition of energy (detailed derivation not required). Specific heats of gases.	Lectures 8	
Sem III	PHS- A- CC- 3-6- TH		b) Molecular collisions: Mean free path. Collision probability. Estimation of M e a n Free Paths. Transport Phenomena in Ideal gases: 1) Viscosity, 2) thermal conduction and 3 diffusion. Brownian Motion and its significance.	Lectures 10	July to Pre- Puja
			 c)Real Gases: Behavior of Real gases: Deviations from Ideal gas equation. Virial equation. Andrew's experiment of CO₂ gas Critical constants. Continuity of liquid and gaseous state. Vapour and Gas. Boyle Temperature. Van der Waal's equation of state for real gases. Values of critical constants. Law of corresponding states. Comparison with experimental curves. P-V diagrams. Conduction of Heat a) Thermal conductivity, diffusivity. Fourier's equation for heat conduction – its solution for rectilinear flow of heat. 	Lectures 8 Lectures 3	
Sem III	PHS- A- CC- 3-5- TH		 Some Special Integrals a) Beta and Gamma functions and Relation between them. Expressions of integrals in terms of Gamma functions. Error functions (Probability Integral). Partial differential equations a) Solutions to partial differential equations using separation of variables; Laplace's equation in problems of rectangular, cylindrical and spherical symmetry. Wave equation and its solution for a vibrational mode of stretched strings, rectangular and 	Lectures 5 Lectures 10	Post Puja to End Sem
			circular membranes. Diffusion equation.		

Paper	Unit	Торіс	No. of	Session
			lectures	
PHS- A- CC- 4-8- TH		 a) Michelson-Morley experiment and its outcome. Postulates of special theory of relativity. Lorentz transformation. Simultaneity and order of events. Lorentz contraction, Time dilatation, Relativistic transformation of velocities. Relativistic dynamics : variation of mass with velocity. Massless particle. Mass-energy equivalence. Transformation of energy and momentum. b) Relativity in Four vector notation: Four Vectors, Lorentz transformation and invariant interval, space-time diagrams. Proper time and proper velocity. Relativistic energy and momentum - Four momentum. Conservation of four momentum and applications to collisions. 	Lectures 15 Lectures 15	Jan - June
		Minkowski Force.		
PHS- A- CC- 4-9- TH		Lasers: Einstein A and B coefficients. Metastable states. Spontaneous and stimulated emissions. Optical pumping and population inversion. Three-level and Four-level lasers. Ruby Laser and He Ne Laser Basic Lasing	Lectures 10	Jan - June
PHS A- SEC B-TH		 Renewable Energy and Energy Harvesting Geothermal Energy : Geothermal resources, Geothermal technologies. Hydro Energy: Hydropower resources, Hydropower technologies, environmental impacts of hydropower sources. Piezoelectric Energy Harvesting: a) Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity. Piezoelectric generators, Piezoelectric Energy Harvesting applications and Human power. Electromagnetic Energy Harvesting a) Linear Generators, physics mathematical models, recent applications. b) Carbon capture technologies, cell, batteries, power consumption. c) Environmental issues and Renewable 	Lectures 2 Lectures 3 Lectures 6 Lectures 6	Jan - June
	Paper PHS- A- CC- 4-8- TH PHS- A- CC- 4-9- TH PHS A- SEC B-TH	PHS- A- CC- 4-8- TH PHS- A- CC- 4-9- TH PHS- A- CC- 4-9- TH	PaperUnitTopicPHS- A- CC- 4.8- THPHS- A- CC- 4.8- THa) Michelson-Morley experiment and its outcome. Postulates of special theory of relativity. Lorentz transformation. Simultaneity and order of events. Lorentz contraction, Time dilatation, Relativistic transformation of velocities. Relativistic dynamics : variation of mass with velocity. Massless particle. Mass- energy equivalence. Transformation of energy and momentum. b) Relativity in Four vector notation: Four Vectors, Lorentz transformation and invariant interval, space-time diagrams. Proper time and proper velocity. Relativistic energy and momentum - Four momentum. Conservation of four momentum and applications to collisions. Minkowski Force.PHS- A- CC- 4.9- THLasers: Einstein A and B coefficients. Metastable states. Spontaneous and stimulated emissions. Optical pumping and population inversion. Three-level and Four-level lasers. Ruby Laser and He-Ne Laser. Basic Lasing.PHS- A- SEC B-THRenewable Energy and Energy HarvestingPHS A- SEC B-THa) Introduction, Physics and characteristics of piezoelectric energy Harvesting: a) Introduction, Physics and characteristics of piezoelectric generators, Piezoelectric Energy Harvesting applications and Human power. Electromagnetic Energy Harvestinga) Linear Generators, physics mathematical models, recent applications. b) Carbon capture technologies, cell, batteries, power consumption. c) Environmental issues and Renewable sources of energy watainability	PaperUnitTopicNo. of lecturesPHS- A- CC- 448- THa) Michelson-Morley experiment and its outcome. Postulates of special theory of relativity. Lorentz transformation. Simultaneity and order of events. Lorentz contraction, Time dilatation, Relativistic transformation of velocities. Relativistic dynamics : variation of mass with velocity. Massless particle. Mass- energy equivalence. Transformation of energy and momentum. b) Relativity in Four vector notation: Four Vectors, Lorentz transformation and invariant interval, space-time diagrams. Proper time and proper velocity. Relativistic energy and momentum - Four momentum. Conservation of four momentum and applications to collisions. Minkowski Force.Lectures 15PHS- A- CC- 40- THLasers: Einstein A and B coefficients. Metastable states. Spontaneous and stimulated emissions. Optical pumping and population inversion. Three-level and Four-level lasers. Ruby Laser and He-Ne Laser. Basic Lasing.Lectures 10PHS- A- SEC B-THRenewable Energy and Energy Harvesting a) Introduction, Physics and characteristics of piezoelectric Energy Harvesting: a) Introduction, Physics and characteristics of piezoelectric parameters and modeling of piezoelectric parameters and modeling of piezoelectric effect, materials and mathematical description of piezoelectricity. Piezoelectric parameters and modeling of piezoelectric parameters and modeling of piezoelectric parameters and modeling of b) Carbon capture technologies, cell, batteries,

Year	Paper	Unit	Торіс	No. of	Session
				lectures	
			1. Time dependent and time independent Schrodinger equation Eigenstates, normalization and orthonormality.	Lectures 6+ 2 (Tutorial)	
III (1+1+ 1)	V	П	2. Simple applications of Quantum Mechanics One dimensional potential well and barrier, boundary conditions, bound and unbound states. Reflection and transmission coefficients for a rectangular barrier in one dimension – explanation of alpha decay. Free particle in one dimensional box, box normalization, momentum eigenfunctions of a free particle. Linear harmonic oscillator, energy eigenvalues from Hermite differential equation, wave function for ground state, parity of wave function.	Lectures 15+ 3 (Tutorial)	July to Pre- Puja
			 3. Schrodinger equation in spherical polar coordinates Angular momentum operators and their commutation relations; eigenvalues and 		
			eigenfunctions of L^2 and Lz; theorem of addition of angular momenta [statement with examples]. The hydrogen atom problem – stationary state wavefunctions as simultaneous eigenfunctions of H, L^2 , and Lz; radial Schrodinger equation and energy eigenvalues [Laguerre polynomial solutions to be assumed]; degeneracy of the energy eigenvalues.	Lectures 13+ 3 (Tutorial)	

Year	Paper	Unit	Торіс	No. of lectures	Session
			SPECIAL THEORY OF RELATIVITY 1. Introduction Galilean transformation and invariance of Newton's laws of motion, non- invariance of Maxwell's equations. Michelson- Morley experiment and explanation of the null result.	Lectures 4 + 1 (Tutorial)	
III (1+1+ 1)	V	VI	2. Special Theory of Relativity Concept of inertial frame. Postulates of special theory; simultaneity; Lorentz transformation along one of the axes – length contraction, time dilatation and velocity addition theorem, Fizeau's experiment. Four vectors. Relativistic dynamics : variation of mass with velocity; energy momentum relationship.	Lectures 10+ 2 (Tutorial)	Post-Puja to Winter vacation/Test
			3. Vectors and Tensors Covariant and contravariant vectors. Contraction. Covariant, contravariant, and mixed tensors of rank-2, transformation properties. The metric tensor (flat space-time only). Raising and lowering of indices with metric tensors. (Consistent use of any one convention diag (-1,1,1,1) or diag (1,-1,-1,-1).) Example of common four-vectors: position, momentum, derivative, current density, four-velocity.	Lectures 6+ 1 (Tutorial)	
			4. Invariant intervals Concept of space-time: Euclidean and Minkowski. Invariant intervals in 1+1 and 3+1 dimensions (use Minkowski space-time). Space like, time-like and light like four vectors. Light cone. Causality and simultaneity in different frames.	Lectures 5+1 (Tutorial)	

General Course

	Cint	торіс	lectures	Session
РНS- G-CC- 1-1- ТН		 Viscosity (a) Rate ow of liquid in a capillary tube - Poiseuille's formula. Surface Tension Synclastic and anticlastic surface - Excess of pressure - Application to spherical drops and bubbles - variation of surface tension with temperature. Gravitation (a) Motion of a particle in a central force eld. Conservation of angular momentum leading to restriction of the motion to a plane and constancy of areal velocity. Newton's Law of Gravitation. Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. 	Lectures 12	July to Pre- Puja
PHS- G-CC- 1-1- TH		Gravitation contd. Basic idea of global positioning system (GPS). Weightlessness.	Lectures 2	Post-Puja to End Sem Exam
PHS- G- CC-3- 3-TH		 Kinetic Theory of Gases a) Derivation of Maxwell's law of distribution of velocities and its experimental verification. Mean free path (Zeroth order). Transport Phenomena in Ideal gases: 1) Viscosity, 2) thermal conduction and 3 diffusion. Law of equipartition of energies (no derivation) and its application to specific heat of gases, monoatomic and diatomic gases. Theory of Radiation a) Blackbody radiation, Spectral distribution, Concept of energy density, derivation of Planck's Law, Deduction of Wien's distribution Law, Rayleigh-Jean's Law, Stefan-Boltzmann Law, and Wien's displacement Law, from 	Lectures 12 Lectures 8	July to Pre- Puja Post-Puja to End Sem Exam
	PHS- G-CC- 1-1- TH PHS- G- CC-3- 3-TH	PHS- G-CC- 1-1- TH PHS- G-CC- 1-1- TH PHS- G- CC-3- 3-TH	PHS- G-CC- 1-1- THViscosity (a) Rate ow of liquid in a capillary tube - Poiseuille's formula.PHS- G-CC- 1-1- THSurface Tension Synclastic and anticlastic surface - Excess of pressure - Application to spherical drops and bubbles - variation of surface tension with temperature.PHS- G-CC- 1-1- THGravitation (a) Motion of a particle in a central force eld. Conservation of angular momentum leading to restriction of the motion to a plane and constancy of areal velocity. Newton's Law of Gravitation. Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits.PHS- G- CC-3- 3-THKinetic Theory of Gases a) Derivation of Maxwell's law of distribution of velocities and its experimental verification. Mean free path (Zeroth order). Transport Phenomena in Ideal gases: 1) Viscosity, 2) thermal conduction and 3tiffusion. Law of equi- partition of specific heat of gases, mono- atomic and diatomic gases.Theory of Radiation a) Blackbody radiation, Spectral distribution Law, Rayleigh-Jean's Law, Stefan-Boltzmann Law and Wien's displacement Law from Planck's Law.	PHS- G-CC- 1-1 THViscosity (a) Rate ow of liquid in a capillary tube - Poiseuille's formula.Lectures 12PHS- G-CC- 1-1 THGravitation anticlastic surface - Excess of pressure - Application to spherical drops and bubbles - variation of surface tension with temperature.Lectures

Sem IV	PHS- G- CC-4- 4-TH		Wave Optics: Electromagnetic Nature of Light. Definition and properties of wavefront. Huygen's Principle.	Lectures 2	
			Interference Division of amplitude and wavefront. Young's double slit experiment. Llyod's mirror and Fresenl's Biprism. Phase change on reflection and Stokes' treatment. Interference in Thin Films: parallel and wedge shaped films. Fringes of equal inclination and fringes of equal thickness. Newton's rings: measurement of wavelength and refractive index.	Lectures 8	Jan - June
			Michelson's Interferometer 1) Idea of form of fringes, 2) Determination of wavelength, 3) Wavelength difference, 4) Refractive Index and 5) Visibility of fringes.	Lectures 2	
			 Diffraction a) Fraunhofer diffraction: Single slit. Double slit. Multiple slits. Diffraction grating. b) Fresnel Diffraction : Half-period zones. Zone Plate. Fresnel's diffraction pattern of a straight edge, a slit and a wire. 	Lectures 8	
			Polarization Transverse nature of light waves. Plane polarized light - production and analysis. Circular and elliptical polarization. Optical activity.	Lectures 6	
III (1+1+ 1)	IVA	I	Pumps, gauges and engine 1. Production and measurement of high vacuum : Rotary and diffusion pump, Mcleod, Pirani, and Penning gauges.	Lectures 8 + 2 (Tutorial)	July to Pre- Puja

Lesson Plan - Honours (AY 2019-20) Name: Kathakali Biswas Department:Physics

Honors Course

Sem ester	paper	Unit	Торіс	No. of lectures	Session
I	PHS-A- CC-1-1- TH		Recapitulation: Limits, continuity, average and instantaneous quantities, differentiation. Plotting functions. Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves.	Lectures 7	July to Pre- Puja
	PHS-A- CC-1-1- TH		Convergence of infinite series: Convergence of power series . Idea of interval of convergence . Different convergence tests of power series: D'alembert's ratio test, Cauchy's root test, Integral test. Alternating series test. Absolute and conditional convergence. Taylor series of one variable, Maclaurin series. Approximation errors.	Lectures 3	Post-Puja to End Sem Exam
	PHS-A- CC-1-2- TH		Rotational Dynamics: (a) The Rigid Body: Constraints defining the rigid body. Degrees of freedom for a rigid body; (b) Relation between Angular momentum and Angular Velocity: Moment of Inertia Tensor. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies.	Lectures 8	July to Pre- Puja
	PHS-A- CC-1-2- TH		Rotational Dynamics Contd. : (c) Equation of motion for rotation about a fixed axis. Principal Axes transformation. Transformation to a body fixed frame. E.O.M for the rigid body with one point fixed (Euler's equations of motion). Torque free motion.Kinetic energy of rotation.	Lectures 4	Post-Puja toEndSemEx am
II	РНS-А- СС-2-3- ТН		Electrostatics : (a)Coulombs law, principle of superposition, electrostatic field.	Lectures 12	Jan-June

	Electric field and charge density,		
	surface and volume charge density,		
	charge density on the surface of a		
	conductor. Force per unit area on the		
	surface.		
	(b) Divergence of the Electrostatic		
	field, flux, Gauss's theorem of		
	electrostatics, applications of Gauss		
	theorem to find Electric field due to		
	point charge, infinite line of charge,		
	uniformly charged spherical shell and		
	solid sphere, plane charged sheet,		
	charged conductor.		
	(c) Curl of the Electrostatic Field.		
	Conservative nature of electrostatic		
	neua, introduction to electrostatic		
	linear surface and volume charge		
	distributions potential for a uniformly		
	charged spherical shell and solid	T	
	sphere Calculation of electric field	Lectures	
	from potential.	U	
	nom potential		
	Dielectric properties of matter:		
	Electric dipole moment, electric		
	potential and field due to an electric		
	dipole, force and Torque on a dipole.		
	Electric Fields inside matter, Electric		
	Polarisation, bound charges,		
	displacement density vector, relation		
	between \vec{E} , \vec{P} and \vec{D} . Gauss's theorem	Lectures	
	in dielectrics, linear Dielectric medium,	4	
	electric succeptibility and permittivity.		
	Electrostatic boundary conditions for \vec{E}		
	and \vec{D} .		
	Method of Images:		
	Laplace's and Poisson equations.	Lectures	
	Uniqueness Theorems. Method of	3	
	Images and its application to: Plane		
	Infinite metal sheet, Semi-infinite		
	dielectric medium and metal Sphere.		
	Floatnostatio Enorm		
	Electrostatic energy:		
	charges. Electrostatic energy of a		
	charged sphere. Energy per unit		
	volume in electrostatic field		

Semes	paper	Unit	Торіс	No. of	Session
ter				lectures	
IV	PHS-A-		Complex Analysis:	Lectures	Even Sem
	CC-4-8-		(a) Brief Revision of Complex	20	
	TH		Numbers. and their Graphical		
			Representation.		
			Euler's formula, Roots of Complex		
			Numbers. Functions		
			of Complex Variables. Analyticity and		
			Cauchy-Riemann Conditions.		
			Examples of analytic functions.		
			Singular functions: poles and branch		
			points, order of singularity, branch		
			cuts. Integration of a function of		
			a complex variable. Cauchy's		
			Inequality. Cauchy's Integral formula.		
			Simply and multiply connected region.		
			Laurent and Taylor's expansion.		
			Residues and Residue Theorem.		
			Application in solving Definite		
			Integrals.		

Year	paper	Unit	Торіс	No. of	Session
			-	lectures	
III	V	II	Central force problem:	Lectures	July to
(1+1+1)			Motion under central force; Nature of	13+3(Tutori	Pre-Puja
			orbits in an attractive inverse square field;	al)	-
			Kepler's laws of planetary motion.		
			Rutherford scattering as an example of		
			repulsive potential.		
			Mechanics of Ideal Fluids:		
			Streamlines and flowlines; Equation of		
			continuity; Euler's equation of motion;		
			Streamline motion - Bernoulli's equation		
			and its applications. Definition of		
			Newtonian and non-Newtonian fluids.		
			Lagrangian and Hamiltonian	Lectures	Post-Puja
			formulation of Classical Mechanics:	12+2(Tutori	to Winter
			Generalised coordinates, constraints and	al)	vacation
			degrees of freedom; D'Alembart's		/Test
			principle; Lagrange's equation for		
			conservative systems (from D'Alembert's		
			principle; variational principle not		
			required) and its application to simple		
			cases; Generalised momentum; Idea of		
			cyclic coordinates, its relation with		
			conservation principles; Definition of		
			Hamiltonian, Hamilton's equation		
			(derivation by Legendre transformation)		
			and its application to simple cases.		

Year	paper	Unit	Торіс	No. of lectures	Session
III	VIIA	Ι	Generalization of Ampere's Law:	Lectures	July to Pre-
(1+1+1)			Displacement Current, Maxwell's	19	Puja
			Field Equations, Wave equation for		
			electromagnetic (EM) field and its		
			solution – plane wave and spherical		
			wave solutions, transverse nature of		
			field, relation between E and B;		
			energy density of field, Poynting		
			vector and Poynting's theorem,		
			boundary conditions.		
			EM Waves in an isotropic		
			dielectric:		
			Wave equation reflection and		
			refraction at plane boundary.		
			reflection and transmission		
			coefficients Fresnel's formula		
			change of phase on reflection		
			polarization on reflection and		
			Brewster's law total internal		
			reflection		
			EM waves in conducting medium:		
			Wave equation in conducting		
			medium, reflection and transmission		
			at metallic surface – skin effect and		
			skin depth, propagation of E-M waves		
			between parallel and conducting		
			plates – wave guides (rectangular		
			only).		
			Dispersion:	Lectures	Post-Puia to
			Equation of motion of an electron in a	6+5(Tutorial)	Winter
			radiation field : Lorentz theory of	0.0(1000100)	vacation/Test
			dispersion – normal and anomalous.		vucuulon, 1 cov
			Sellmeier's and Cauchy's formulae		
			absorptive and dispersive mode, half		
			power frequency, band width.		
			Scattering.		
			Scattering of radiation by a bound		
			charge Rayleigh's scattering		
			(qualitative ideas) blue of the sky		
			absorption.		

General Course

Semester	paper	Unit	Торіс	No. oflectures	Session
Ι	PHS-		Oscillations:	Lectures	July to Pre-
	G-		Simple harmonic motion. Differential	9	Puja
	CC-1-		equation of SHM and its solutions.		9
	1-TH		Kinetic and Potential Energy, Total		
			Energy and their time		
			averages. Damped oscillations. Forced		
			oscillations with harmonic		
			forces. Compound pendulum.		
			Rotational Motion:	Lectures	Post-Puja
			Rotation of a rigid body about a fixed	10	toEnd
			axis. Angular velocity and		SemExam
			angular momentum. Moment of Inertia.		S vinizina in
			Torque. Conservation of		
			angular momentum.		

Year	paper	Unit	Торіс	No. oflectures	Session
III	IVA	Ι	Engines :	Lectures	Post-Puja to Winter
(1+1+1)			Heat engines, thermal	10	vacation/Test
			efficiency, indicated Horse-		
			power and brake Horse-power,		
			Otto 22 cycle and Diesel		
			cycle, four-stroke petrol and		
			diesel engines, calculation of		
			efficiency and comparison.		