Even Semester, 2023-24

LESSON PLAN

Department Name: Physics

Name of Faculty: Dr Gayatri Pal

Paper Name & Code: Digital Systems & Applications CC13 (Th)

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Integrated	Principle and design of monolithic IC		1	PPT	
Circuits	Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI		2		
2. Number System	Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers		2	Chalk and Talk	
	Singed & unsigned numbers, 1's & 2's complement, subtraction using 2's complement	Digital circuits Part I & II by D. Roychoudhury Digital Principles & applications by A.P. Malvino, D.P. Leach	1	Chalk and Talk	
	Difference between Analog and Digital Circuits. Switching algebra, Huntington postulates, combinational logic		2	Chalk and Talk	
3.Digital Circuits	AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers.		4	Chalk and Talk	
	Different logic families DTL , TTL ,CMOS		2	PPT	

Department Name: Physics

Name of Faculty: Dr Gayatri Pal

Paper Name & Code: Digital Systems & Applications CC13 (Th)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	MOS & CMOS inverter NAND/NOR using MOS logic		2	PPT	
3 (contd)	De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map.		4	Chalk and Talk	
4. Implementation of different circuits	Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. IC 7483		2	Chalk and Talk	
	Combinational logic circuits using PLA/PAL		2	PPT	
5. Data processing	Basic idea of Multiplexers, De-multiplexers,		2	Chalk and Talk	
circuits	Decoders, Encoders.		1	Chalk and Talk	
6. Sequential circuits	SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations.	Digital circuits Part I & II by D. Roychoudhury	3	Chalk and Talk	

Department Name: Physics

Name of Faculty: Dr Gayatri Pal

Paper Name & Code: Digital Systems & Applications CC13 (Th)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
		Digital Principles & applications by A.P. Malvino, D.P. Leach			
	Race-around conditions in JK Flip-Flop. M/S JK Flip-Flop. D –FF, T -FF		2	Chalk and Talk	
7. Registers & Counters	Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits).		3	Chalk and Talk	
	Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter	Digital circuits Part I & II by D. Roychoudhury Digital Principles & applications by A.P. Malvino, D.P. Leach	3	Chalk and Talk	
8. Computer organisation	I/O devices, Data Storage (RAM, ROM, EPROM)		2	PPT	
a garage	Memory organisation& addressing, interfacing, Memory Map		3	PPT	
9. Data Conversion	Resistive network (Weighted and R-2R Ladder). Accuracy and Resolution. A/D Conversion		2	PPT	
	D/A conversion		2	PPT	
		Total	60		

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Solid State Physics, CC14

Planned						
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments	
	Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis; Central and Non-Central Elements.	1) Introduction to Solid State Physics by C. Kittel, 2) Solid State Physics by R K Puri and V K Babbar		2		
	Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones.		n to Solid			
1. Crystal Structure (AS)	Diffraction of X-rays by Crystals. Laue and Bragg's Law and their equivalence.		Kittel,	2	Chalk and Talk, Assignment	
(-12)	Atomic and Geometrical Structure Factor.		2	Assignment		
	Basic idea of crystal indexing: examples with SC, BCC, FCC structure.		3			
	Problems		1			

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Solid State Physics, CC14

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
2. Elementary Lattice	Lattice Vibrations and Phonons: Linear Monatomic and Diatomic Chains.		3		
Dynamics (AS)	Acoustical and Optical Phonons.	1) Introduction to Solid State Physics by C.	1		
	Qualitative Description of the Phonon Spectrum in Solids.	Kittel, 2) Solid State Physics by R K Puri and V K Babbar	1	Chalk and Talk	
	Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids, T^3 law.		4		
	Problems		1		
3. Magnetic	Dia, Para, Ferri and Ferromagnetic Materials.	1) Introduction to Solid State Physics by C. Kittel, 2) Solid State Physics by R K Puri and V K Babbar	1		
Properties of Matter	Classical Langevin Theory of Dia and Paramagnetic Domains.		2	Chalk and Talk	
(AS)	Quantum Mechanical Treatment of Paramagnetism (using parition function).		2		
	Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.		3		

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Solid State Physics, CC14

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Polarization. Local Electric Field at an Atom. Depolarization Field		1		
4. Dielectric	Electric Susceptibility. Polarizability. Clausius Mosotti Equation.	1) Introduction to Solid State Physics by C. Kittel,	2		
Properties of Materials (AS)	Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion	2) Solid State Physics by R K Puri and V K Babbar	2	Chalk and Talk, Assignment	
	Cauchy and Sellmeir relations. Langevin- Debye equation. Complex Dielectric Constant.	Bautai	2		
	Problems		1		
	Free electron gas in metals, effective mass, drift current, mobility and conductivity, Hall effect in metals.	1) Introduction to Solid State Physics by C. Kittel,	3		
5. Drude's theory (AS)	Thermal conductivity. Lorentz number, limitation of Drude's theory	2) Solid State Physics by R K Puri and V K Babbar		Chalk and Talk, Assignment	

Subject Name/Code: PHSA

3

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG), Dr. Atri Sarkar (AS)

Paper Name & Code: Solid State Physics, CC14

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Kronig Penny model. Band Gap. effective mass and effective mass tensor	1) Introduction to Solid	3		
6. Elementary	Conductor, Semiconductor (P and N type) and insulator.	State Physics by C. Kittel,	1		
band theory	Conductivity of Semiconductor, mobility	, 11,0001,	2	Chalk and Talk,	
(SDG)	Hall Effect. Measurement of conductivity (4 probe method) & Hall coefficient.	2) Solid State Physics by Harald Ibach and Hans	3	Assignment	
	Problems and quiz	Lüth	1		
	Peer teaching		1		
	Class Test		1		
	Experimental Results. Critical Temperature. Critical magnetic field.	1) Introduction to Solid State Physics by C. Kittel,	1		
7. Superconducti	Meissner effect. Type I and type II Superconductors,		2	Chalk and Talk	
vity (AS)	London's Equation and Penetration Depth. Isotope effect.	2) Solid State Physics by R K Puri and V K Babbar	2	, i	
	Class test	1			
		Total	60		

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG). Ms. Kathakali Biswas (KB)

Paper Name & Code: Nanomaterials and Applications, DSEA2(a)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Length scales in physics, Nanostructures:1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods)		2		
Nanoscale Systems	Band structure and density of states of materials at nanoscale	Theory, Problem and Solutions by U. N. Nandi and D. Jana	2	Chalk and Talk, PPT,	
(SDG)	Size Effects in nano systems,	2) Introduction to Nanoscience and Nanotechnology by Kuno. M	1	Quiz, Assignment	
	Quantum confinement: Applications of Schrodinger equation: Infinite potential well, potential step, potential box		3		
	quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.		2		
2. Synthesis of Nanostructure Materials	Top down and Bottom up approach, Photolithography.		2	Chalk and Talk, PPT, Assignment	

Subject Name/Code: PHSA

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG). Ms. Kathakali Biswas (KB)

(KB)	Ball milling.						
	Gas phase condensation.						
	Vacuum deposition						
	Physical vapor deposition (PVD)	1) Nanomaterials:					
	Thermal evaporation – Electron beam evaporation – Pulsed Laser deposition	Theory, Problem and Solutions by U. N. Nandi and D. Jana 2) Introduction to	Solutions by U. N. Nandi and D. Jana	Solutions by U. N. Nandi	Solutions by U. N. Nandi and D. Jana		
	Chemical vapor deposition (CVD)					12	
	MBE growth of quantum dots	Nanoscience and Nanotechnology by					
	Chemical Synthesis, Chemical bath deposition	Kuno. M					
	Electro deposition Spray pyrolysis						
	Hydrothermal synthesis						
	Sol-Gel synthesis						

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG). Ms. Kathakali Biswas (KB)

	Tutorial		1		
	X-Ray Diffraction.	Nanomaterials: Theory, Problem and	2		
3.Characteriza tion (KB)	Optical Microscopy. Scanning Electron Microscopy (SEM). Transmission Electron Microscopy (TEM).	Solutions by U. N. Nandi and D. Jana 2) Introduction to	3	Chalk and Talk, PPT, Assignment	
	Atomic Force Microscopy (AFM). Scanning Tunneling Microscopy (STM). Tutorial	Nanoscience and Nanotechnology by Kuno. M	4		
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
4. Optical Properties (SDG)	Coulomb interaction in nanostructures Concept of dielectric constant for nanostructures and charging of nanostructure.	1) Nanomaterials: Theory, Problem and Solutions by U. N. Nandi	2	Chalk and Talk, PPT, Assignment, Quiz	

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG). Ms. Kathakali Biswas (KB)

	Quasi-particles and excitons. Excitons in direct and indirect band gap semiconductor nanocrystals. Quantitative treatment of quasi-particles and excitons, charging effects Radiative processes: General formalization, absorption, emission and luminescence Optical properties of heterostructures and nanostructures. Tutorial Problems + Class Test	and D. Jana 2) Introduction to Nanoscience and Nanotechnology by Kuno. M	2 3 2 2+1=3		
5. Electron Transport (SDG)	Carrier transport in nanostrucutures. Coulomb blockade effect	1) Nanomaterials: Theory, Problem and Solutions by U. N. Nandi and D. Jana	2	Chalk and Talk	
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
5. Electron	thermionic emission, tunneling and hoping conductivity	2) Introduction to	3	Chalk and Talk,	
Transport (SDG)	Defects and impurities: Deep level and surface defects.	Nanoelectronics by Vladimir Mitin et. al.	2	Quiz, PPT, Assignment	

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG). Ms. Kathakali Biswas (KB)

	Peer teaching		1	
	Tutorial Problems and Quiz		1 +1=2	
	Applications of nanoparticles, quantum dots,			
6. Applications (KB)	nanowires andthinfilmsfor photonicdevices (LED,solar cells).Single electrontransferdevices(noderivation). CNT basedtransistors.Nanomaterial Devices:Quantum dot sheterostructurelasers,opticalswitchingandopticald atastorage.Magneticquantumwell;magneticdots magneticdatastorage.MicroElectromechanicalSyst ems(MEMS),NanoElectromechanicalSystems(NEMS).		15	
		Total	75	

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Introduction to communication means and modes. Need for modulation.	1. Introduction to	2		
1. Electronic communication	Block diagram of an electronic communication system. Brief idea of frequency allocation for radio communication system in India (TRAI).	n communication	Chalk and Talk,		
	Electro- magnetic communication spectrum, band designations and usage.			Assignment	
	Channels and base-band signals.	Kenedy	edy 2		
	Concept of Noise, signal-to-noise (S/N) ratio		2		
	Amplitude Modulation, mathematical analysis for modulation index, frequency spectrum and power in AM Generation of AM (Emitter Modulation)	Communication			
2. Analog Modulation	Diode/square law modulator, Amplitude Demodulation (diode detector) Balanced modulator for DSB, Concept of Single sideband generation and detection, concept of vestigial sideband.	Author: Tomasi 4. Communication Systems-Simon S. Haykin	4	Chalk and Talk, Assignment	

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC)

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
2. Analog	Frequency Modulation (FM) and Phase Modulation (PM), modulation index and frequency spectrum, Transistor/FET reactance modulator, equivalence between FM and PM, Generation of FM using VCO		4	Chalk and Talk,	
Modulation	FM detector : slope detector ,Balanced slope detector, Idea of Phase discriminator and ratio detector, Qualitative idea of IF and Super heterodyne receiver		3	Assignment	
	Channel capacity, Sampling theorem, Basic Principles-PAM, PWM, PPM	5. Digital	4		
3. Analog Pulse Modulation	only, Multiplexing – FDM and TDM and its application in communication	Communications: Fundamentals And Applications- Bernard	4	Chalk and Talk, Assignment	
	Problem solving class	Sklar	2		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC)

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Need for digital transmission, Sampling and Shanon's criteria, Quantization and Encoding, Quantisation error,		3		
	non-uniform quantisation, Impulse sampling, Natural sampling and flat top sampling,	6. Pulse Code	3		
	Pulse Code Modulation (PCM), Differential	Modulation Techniques:			
4. Digital Pulse	PCM, Digital Carrier Modulation Techniques,	With Applications in	3	Chalk and Talk, PPT,	
Modulation		Communications and		Assignment,	
	Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK).	Data Recording-William	2	Quiz	
	Idea of 8-PSK, QPSK, BPSK, use of Constellation diagram (idea only), Delta modulation. Concept of companding-	M. Waggener (Author)	2		
	A law and μ law. Line Coder: Unipolar and bipolar RZ& NRZ, Manchester format.		2		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC)

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments			
	Satellite Communication: Introduction, need, Geo synchronous satellite orbits geostationary satellite advantages of geostationary satellites.		5					
	Satellite visibility, transponders (C - Band), path loss, ground station, simplified block diagram of earth station. Uplink and downlink.	7. Satellite Communications- Varsha	5					
5. Introduction to	Mobile Telephony System: Basic concept of mobile communication, frequency bands used in mobile communication,	Agrawal Anil K. Maini 8. Wireless and Mobile Communication- Rishabh Anand	8. Wireless and Mobile Communication-	8. Wireless and Mobile Communication-	8. Wireless and Mobile Communication-	3	Chalk and	
communication and Navigation systems:	concept of cell sectoring and cell splitting, SIM number, IMEI number,					3 Assig	Talk, PPT, Assignment, Quiz	
systems.	need for data encryption, architecture (block diagram) of mobile communication network,		3					
	idea of GSM, CDMA, TDMA and FDMA technologies, simplified block diagram of mobile phone handset,		4					
	2G, 3G and 4G concepts (qualitative only).GPS navigation system (qualitative idea only).		2					
		Total	75					

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC)

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS), Ms. Kathakali Biswas (KB)

Paper Name & Code: Mathematical Physics III, CC8

	Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lectur e Planne d	Content Delivery Techniqu e	Remarks / Comment s	
	Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, Roots of Complex Numbers. Functions of Complex Variables.	Complex Variables	3			
Complex Analysis:	Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable.	and Application s, J.W. Brown and R.V. Churchill, 7th Ed. 2003, Tata McGraw- Hill 4	5	Chalk and		
(KB)	Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region.		Churchill, 5 7th Ed. 3 003, Tata McGraw-	talk		
	Laurent and Taylor's expansion.					
	Residues and Residue Theorem. Application in solving Definite Integrals. only single valued integrals; simple poles on and off the real axis.					
Variation	Functionals. Basic ideas of functionals. Extremization of action as a basic principle in mechanics.	Classical Mechanics,	4			
al calculus in Physics	Lagrangian formulation. Euler's equations of motion for simple systems: harmonic oscillators, simple pendulum, spherical pendulum, coupled oscillators.	N.C. Rana	6	Chalk and talk		
(KB)	Cyclic coordinates. Symmetries and conservation laws.	Hill	4			
	Legendre transformations and the Hamiltonian formulation of	Education	6			

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS), Ms. Kathakali Biswas (KB)

Paper Name & Code: Mathematical Physics III, CC8

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lectur e Planne d	Content Delivery Techniqu e	Remarks / Comment s
	mechanics. Canonical equations of motion. Applications to simple systems.	Classical Mechanics H.V. Sharma, S.I Gupta,V. kumar			
	Michelson-Morley Experiment and its outcome.		1		
Special theory of Relativity	Postulates of Special Theory of Relativity.Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation.		2		
(AS)	Relativistic transformation of velocity.Relativistic Dynamics.Variation of mass with velocity.Massless Particles.Mass-energy Equivalence. Transformation of Energy and Momentum.		4	Chalk and talk	

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS), Ms. Kathakali Biswas (KB)

Paper Name & Code: Mathematical Physics III, CC8

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lectur e Planne d	Content Delivery Techniqu e	Remarks / Comment s
	A short introduction to tensors Covariant and contravariant vectors. Contraction. Covariant, contravariant, and mixed tensors of rank-2, transformation properties. The metric tensor (flat spacetime only). Raising and lowering of indices with metric tensors. (Consistent use of convention \rightarrow diag(1,-1,-1).)	Introductio n to Special Relativity, R. Resnick, 2010, John	4		
	RelativityinFourVectorNotation:Fourvectors,LorentzTransformationandInvariantinterval,Space-time diagrams.PropertimeandPropervelocity.Relativisticenergyandmom entum-Fourmomentum.Conservation of four momentum and applications to collisions.Minkowski Force.	Wiley and Sons	6		
	Problem set		2		
	Class test		1		
		Total	60		

Department Name: Physics

Name of Faculty: Principal Madam Dr Maitreyi Ray Kanjilal (MRK), Dr Gayatri Pal (GP)

Paper Name & Code: Analog Systems & Applications CC9 (Th)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Components & sources		1	Chalk and Talk	
1.Circuits and	Thevenin & Norton Theorem		2		
Network	Superposition & Maximum Power Transfer Theorem		2	Chalk and Talk	
(GP)	Numericals		1		
	P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity.		2	Chalk and Talk	
2. Semiconductor Diodes & Applications (GP)	Resistance. Current Flow Mechanism in Forward and	Fundamental Principles of Electronics by B.GHOSH Electronics Fundermentals and Applications by D. Chattopadhyay & P.C. Rakshit	3	Chalk and Talk	
			3	Chalk and Talk	
3.Bipolar Junction transistors and biasing (GP)	n-p-n and p-n-p Transistors . Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cut-off and Saturation Regions.		3	Chalk and Talk	

Department Name: Physics

Name of Faculty: Principal Madam Dr Maitreyi Ray Kanjilal (MRK), Dr Gayatri Pal (GP)

Paper Name & Code: Analog Systems & Applications CC9 (Th)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
3 (Contd)	Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance.		4	Chalk and Talk	
	Numericals	Fundamental Principles of	2		
4. Field effect transistors	JFET & MOSFET basic structure, principle of operation	Electronics by B.GHOSH Electronics Fundermentals and Applications by D. Chattopadhyay & P.C. Rakshit	1	PPT	
(GP)	Pinch off, Characteristics, threshold voltage, short channel effect		2	Chalk and Talk	
5. Regulated	Zener Diode , Load and Line regulation ,numericals		2 +1	Chalk and Talk	
Power Supply (GP)	Series regulated power supply with Zener and Transistor		1	PPT	
6.	Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers		2	Chalk and Talk	
Amplifiers(GP)	Frequency response of a CE amplifier. Role of		2	Chalk and Talk	

Department Name: Physics

Name of Faculty: Principal Madam Dr Maitreyi Ray Kanjilal (MRK), Dr Gayatri Pal (GP)

Paper Name & Code: Analog Systems & Applications CC9 (Th)

Planned								
Unit / Group / Module / Article		Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments		
		capacitors in cut off frequencies						
	_	Numericals		2				
		Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise		2	Chalk and Talk			
7. Feedback in amplifiers & OPAMP	Operational Amplifiers (Black Characteristics of an Ideal and Practi 741) Open-loop and Closed-loop (Response. CMRR. Slew Rate and coground. Applications of Op-Amps: Linear - non-inverting amplifiers, (2) Adder (4) Differentiator, (5) Integrator, (6)		Characteristics of an Ideal and Practic 741) Open-loop and Closed-loop C Response. CMRR. Slew Rate and co ground.	Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground.	Fundamental Principles of Electronics by B.GHOSH Electronics Fundermentals and Applications by D.	3	Chalk and Talk	
(MRK)		Applications of Op-Amps: Linear - (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Comparator (9) Schmidt Trigger	Chattopadhyay & P.C. Rakshit	6	Chalk and Talk			
		Numericals		4				

Department Name: Physics

Name of Faculty: Principal Madam Dr Maitreyi Ray Kanjilal (MRK), Dr Gayatri Pal (GP)

Paper Name & Code: Analog Systems & Applications CC9 (Th)

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
8. Multivibrator	Transistor as a Switch, Explanation using Characteristics ,Calculation of switching time		1		
(GP)	Bistable, Monostable , Astable Multivibrators Construction, wave forms	Fundamental Principles of Electronics by B.GHOSH	3		
9. Oscillators (GP)	Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. LC oscillators , Tank Circuit, Hartley & Colpitts oscillators.	Electronics Fundermentals and Applications by D. Chattopadhyay & P.C. Rakshit	2		
(Gr)	RC Phase shift oscillator, determination of Frequency. Lead Lag circuit, Wien Bridge Oscillator		3		
		Total	60		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Quantum Mechanics, CC10

	Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments	
1. Wave packet description	Description of a particle using wave packets. Spread of the Gaussian wave-packet for a free particle in one dimension.		3			
(SC)	Fourier transforms and momentum space wave function. Position-Momentum uncertainty.		2			
2. General discussion of	Continuity of wave function, boundary condition and emergence of discrete energy levels.	1) Introduction to Quantum Mechanics by S. N. Ghoshal, 2) Quantum Mechanics: Concepts and Application by N. Zittili	Mechanics by S. N. Ghoshal, 2) Quantum Mechanics: Concepts and Application	3		
bound states in an arbitrary potential (SC)	Application to one dimensional square well potential of finite depth.			Concepts and Application	3	Chalk and Talk, Quiz, Assignment
r	Problems		2			
3. Quantum mechanics of	Setting up the eigen-value equation for the Hamiltonian.	3) Quantum Mechanics by G. Aruldhas	2			
simple harmonic oscillator (SC)	Energy levels and energy eigen functions in terms of Hermite polynomials (Solution to Hermite differential equation may be assumed).		2			
	Ground state, zero point energy & uncertainty principle.		2			

Subject Name/Code: PHSA

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Quantum Mechanics, CC10

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Reduction of a two body problem to a one body problem. The time independent Schrodinger equation for a particle moving under a central force, the Schrodinger equation in spherical polar coordinates	1) Introduction to Quantum Mechanics by S. N. Ghoshal,	1		
4. Quantum theory of hydrogen-like	Separation of variables, Angular equation and orbital angular momentum. Spherical Harmonics (Solution to Legendre differential equation may be assumed)		2	Chalk and Talk,	
atoms (SDG)	Radial equation for attractive coulomb interaction - Hydrogen atom. Solution for the radial wave- functions (Solution to Laguerre differential equation may be assumed).	by N. Zittili 3) Quantum Mechanics by G. Aruldhas	2	PPT, Assignment	
	Shapes of the probability densities for ground & first excited states. Orbital angular momentum quantum numbers l and m; s, p, d shells.		2		
	Problems		1		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Quantum Mechanics, CC10

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Generalized angular momentum. Electron's magnetic Moment and Spin Angular Momentum . J =L+S.	1) Atomic and Molecular Spectra: Laser by Raj Kumar 2) Physics of Atoms and Molecules by Bransden, Joachain	1		
5. Generalized	Gyromagnetic Ratio and Bohr Magneton and the g factor.		2	Chalk and Talk, PPT, Assignment	
Angular Momenta and Spin (SDG)	Energy associated with a magnetic dipole placed in magnetic field. Larmor's Theorem		2		
	Stern-Gerlach Experiment.		1		
	Addition of angular momenta-statement only. Allowed values of angular momentum		2		
	Problems + Class Test		1+1=2		
6. Spectra of Hydrogen atom and its fine structure (SDG)	(a) Formula for first order non-degenerate perturbative correction to the eigen value statement only.		1		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Quantum Mechanics, CC10

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
6. Spectra of Hydrogen	Spin-orbit interaction and relativistic correction to the kinetic energy and Darwin term.		2	Chalk and Talk, Quiz,	
atom and its fine structure (SDG)	Fine structure of the hydrogen atom spectrum(No rigorous derivation is required).		1	Assignment	
	Peer teaching		1		
7. Atoms in Electric &	ZeemanEffect: Normal and Anomalous Zeeman Effect (Formula for first order perturbative correction to the eigenvalue to be assumed).	1) Atomic and Molecular Spectra: Laser by Raj Kumar 2) Physics of Atoms and Molecules by Bransden, Joachain	3	Chalk and Talk, Quiz, PPT	
Magnetic Fields (SDG)	PaschenBack effect & Stark effects (Qualitative Discussion only).		3		
	Problem solving + Peer teaching		1+1=2		
	Identical particles. Symmetric & Antisymmetric Wave Functions. Pauli's Exclusion Principle.		2		
8. Many electron atoms (SDG)	Hund'sRule. Periodic table. Fine structure splitting. L-S and J-J coupling scheme		3	Chalk and Talk, Quiz, PPT,	
	Spectral Notations for Atomic States and Term symbols. Spectra of Alkali Atoms (Na etc.).		2	Assignment	
	Problems and Class test		2 +1=3		
		Total	60		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Arduino, SECB1

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Introduction to Arduino (SC)	Brief history of the Arduino; open-source electronics prototyping	1) Arduino Cookbook, Michael Margolis, O'Reilly Media (2011) 2) https://www.arduino.c c/en/Guide/HomePage	2	Chalk and Talk, Arduino	
2 Basic ideas (SC)	Basic ideas of Arduino, Familiarize the Arduino board, Setting up the arduino board. Installation of IDE in PC/laptop for Arduino programming (Sketch)		3		
3. Arduino Programming: (SDG)	Program structure: Data types, variables and constants, operators, control statements, loops, functions, string.		5		
	Interfacing: serial communication, digital and analog input/output, getting input from sensors (e.g. temperature sensor, ultrasonic sensor etc)		5		

Department Name: Physics

Name of Faculty: Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Arduino, SECB1

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	LED Blinking and fading.		2		
	Measurement of voltages (Below 5V and above).	1) Arduino Cookbook, Michael Margolis, O'Reilly Media (2011) 2) https://www.arduino.c c/en/Guide/HomePage	2	Projects using Arduino	
	Interfacing 7 Segment display.		3		
Projects (SC+SDG)	Construction of thermometer using LM35 or Others.		2		
	Construct the experimental set up for studying simple pendulum and hence determine the acceleration's due to gravity.		3		
	Construct data logger for studying charging and discharging of RC circuit.		3		
		Total	30		

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal, Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Wave and Optics, GE4

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Accoustics (SC)	Review of SHM, damped & forced vibrations: amplitude and velocity resonance.	1) Accoustics by D. P. Roychaudhuri 2) Sound by B. Ghosh	2		
	Fourier's Theorem and its application for some waveforms e.g., Saw tooth wave, triangular wave, square wave.		3	Chalk and Talk,	
	Intensity and loudness of sound. Intensity levels, Decibels.		3		
	Problems and Quiz		2		
2. Superposition of vibrations (SC)	Superposition of Two Collinear Harmonic oscillations having equal frequencies and different frequencies (Beats).			Assignment	
	Superposition of Two Perpendicular Harmonic Oscillation for phase difference $\delta=0,\frac{\pi}{},\pi$: Graphical and Analytical Methods, Lissajous Figures with equal and unequal frequency and their uses.		3	2	

Subject Name/Code: PHSG

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal, Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Wave and Optics, GE4

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
3. Vibrations in String (SC)	Wave equation in stretched string and its solutions. Boundary conditions for plucked and struck strings. Expression of amplitude for both the cases (no derivation).	Accoustics by D. P. Roychaudhuri	3	Chalk and Talk, Assignment	
	Young's law, Ideal of harmonics.	2) Sound by B. Ghosh	2		
	Musical scales and notes		1		
	Problems + Class test		1+1=2		
4. Introduction to wave Optics (GP)	Definition and Properties of wavefront. Huygens Principle, Electromagnetic nature of light.	1) A Text Book on Light	2	Chalk and Talk, Assignment	
	Superposition of two waves with phase difference, distribution of energy,		1		
5. Interference	formation of fringes, visibility of fringes.	by B. Ghosh and K. G. Majumdar	1		
(GP)	Division of amplitude and division of wavefront. Young's Double Slit experiment.		2		
	Lloyd's Mirror and Fresnel's Biprism.		1		

Subject Name/Code: PHSG

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal, Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Wave and Optics, GE4

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Phase change on reflection: Stoke's treatment.		1		
	Interference in Thin Films: parallel and wedge- shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes).	1) A Text Book on Light by B. Ghosh and K. G. Majumdar	3	Chalk and Talk, Assignment	
5. Interference (GP)	Newton's Rings: measurement of wavelength and refractive index.		2		
	Michelson's Interferometer (a) Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength difference, Refractive index.		2		
	Problems + Class test		1+1=2		
4. Diffraction (SDG)	Fraunhofer diffraction Single slit; Double Slit.	1) A Text Book on Light by B. Ghosh and K. G. Majumdar	3	Chalk and Talk, Assignment	
(520)	Multiple slits and Diffraction grating.	Majumdar	2		

Subject Name/Code: PHSG

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal, Dr. Subhendu Chandra (SC), Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Wave and Optics, GE4

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
4. Diffraction	Fresnel Diffraction: Half-period zones	1) A Text Book on Light by B. Ghosh and K. G.	2		
(SDG)	Zone plate.	Majumdar Majumdar	2		
	Problems		1		
	Transverse nature of light waves. Plane polarized light production and analysis	1) A Text Book on Light by B. Ghosh and K. G. Majumdar 2) Optics by L. Mathur	3	Chalk and Talk, Assignment	
	Circular and elliptical polarization		3		
5. Polarization (SDG)	Optical activity.		2		
	Problems + Quiz		1		
	Class Test		1		
		Total	60		

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Subhendu Chandra (SC)

Paper Name & Code: DSCC-2, Basic Physics-II

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
Basic Electricity and	Electrostatics: Coulomb's law, Electric field, Electric field lines. Superposition Principle. Electric flux. Idea of charge density (linear, surface, volume) and continuous charge distributions. Gauss' Law (in integral form) with applications to charge distributions with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field.	Griffiths 3rd Edn	3		
Magnetism (KB)	Introduction to electrostatic potential, Equipotential surfaces. Calculation of potential for linear, surface and volume charge distributions: simple cases (e.g.: uniform line charge, disc, spherical shell, sphere etc.). Potential and field due to a physical dipole; Torque, force and Potential Energy of an electric dipole in a uniform electric field	Electricity and Magnetism, D.Chattopadhyay and P.C.Rakshit, New Central Book Agency, 2011	4	Chalk and talk	

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Subhendu Chandra (SC)

Paper Name & Code: DSCC-2, Basic Physics-II

	Electrostatic energy of system of charges, a charged sphere. Conductors in an electrostatic Field. Mechanical force on the surface of a charged conductor. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Capacitance for parallel-plate, cylindrical, spherical capacitors (without dielectrics). Energy stored in Electrostatic field.	Foundations of Electricity & Magnetism by Dr. Basudev Ghosh	4		
Basic Electricity and Magnetism (GP)	Lorentz force: Force on a moving charge in simultaneous electric and magnetic fields, force on a current carrying conductor in a magnetic field. Trajectory of charged particles in uniform electric field, crossed uniform electric and magnetic fields. Basic principle of cyclotron.	Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings	3	Chalk and talk	

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Subhendu Chandra (SC)

Paper Name & Code: DSCC-2, Basic Physics-II

	Magnetostatics: Concept of current density (linear, surface, volume). Equation of continuity. Biot and Savart's law, magnetic field due to a straight conductor, circular coil, Helmholtz coil, solenoid. Ampere's circuital law with applications (Infinite long wire, infinite solenoid, infinite current sheet). Magnetic field due to a small current loop concept of magnetic dipole. Torque and force on magnetic dipole in a uniform magnetic field.	Electricity and Magnetism, D.Chattopadhyay and P.C.Rakshit, New Central Book Agency, 2011 Foundations of Electricity & Magnetism by Dr. Basudev Ghosh	8	
Introduction to Thermodynami cs (SC)	Kinetic theory: Macroscopic and microscopic description of matter, Postulates of molecular kinetic theory of an ideal gas, Relation between microscopic and macroscopic state variables, Maxwell's velocity distribution, Concept of pressure and temperature.	Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill	3	Chalk and talk
	Zeroth and First Law of Thermodynamics: Extensive and intensive thermodynamic variables.		9	

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Subhendu Chandra (SC)

Paper Name & Code: DSCC-2, Basic Physics-II

Thermodynamic equilibrium, zeroth law of	Thermal Physics by Dr.		
1	A. B. Gupta & Dr. H. P.		
Concept of work & heat, State Functions, internal	Roy		
	KOy		
energy and first law of Thermodynamics, its			
differential form, first law & various processes.			
Applications of first law: General relation			
between CP and CV, work done during			
isothermal and adiabatic processes,			
compressibility and expansion coefficient.			
	-		
Second Law of Thermodynamics: Reversible and			
irreversible process with examples. Interconversion			
of work and heat. Heat engines. Carnot's cycle,			
Carnot engine & efficiency. Refrigerator &			
coefficient of performance, Kelvin-Planck and		10	
Clausius statements for the second law and their		10	
equivalence. Carnot's Theorem. Applications of			
second law of Thermodynamics: Thermodynamic			
scale of temperature and its equivalence to perfect			
gas scale.			
gus seure.			

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Subhendu Chandra (SC)

Paper Name & Code: DSCC-2, Basic Physics-II

Entropy: Concept of Entropy, Clausius theorem.			
Clausius inequality, Second law of			
Thermodynamics in terms of Entropy. Entropy of			
a perfect gas. Principle of increase of Entropy.			
Entropy changes in reversible and irreversible		6	
processes with examples. Entropy of the universe.			
Principle of increase of Entropy. Temperature-			
Entropy diagrams for different cycles. Third law of			
Thermodynamics. Unattainability of absolute zero.			
	Total	50	

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Scientific Writing Skills (LATEX), SEC 2

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
1. Introduction to LATEX	The difference between WYSIWYG and WYSIWYM. Preparing a basic LATEX file. Compiling LATEX file.	1) https://www.latex- project.org/	2		
2. Document classes	Different type of document classes, e.g., article, report, book and beamer.	2) http://mirror.iopb.res.in/tex archive/info/lshort/english/l short.pdf	5	LATEX software	
3. Page Layout	Titles, Abstract, Chapters, Sections, subsections, paragraph, verbatim	3) Walking with LATEX, Suman Bandyopadhyay, Techno World	4		
	References, Equation references, citation	Teemio World	4		
4. List structures	Itemize, enumerate, description etc	4) https://tug.org/texlive/	3		
5. Representation	Inline math, Equations, Fractions, Matrices		4		
of mathematical equations	Trigonometric, logarithmic, exponential functions		3		

Department Name: Physics

Name of Faculty: Dr. Shinjinee Das Gupta (SDG)

Paper Name & Code: Scientific Writing Skills (LATEX), SEC 2

Unit / Group / Module / Article		Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
5. Representation of mathematical equations	Scaling of Parenthesis, brackets etc.) https://www.latex-project.org/ 2) http://mirror.iopb.res.in/tex archive/info/lshort/english/l short.pdf 3) Walking with LATEX, Suman Bandyopadhyay, Techno World 4) https://tug.org/texlive/	2	LATEX software	
6. Customization of fonts	Bold fonts, emphasize, mathbf, mathcal etc, Changing sizes, Large, Larger, Huge, tiny etc.		3		
7. Writing tables	Creating tables with different alignments, placement of horizontal, vertical lines		3		
8. Figures	Changing and placing the figures, alignment Packages: amsmath, amssymb, graphics, graphicx, Geometry, algorithms, color, Hyperref etc. Use of different LATEX commands and environments, changing the type style, symbols from other languages. Special characters.		7		
	Preparing projects (writing report, CV, article etc)		20		
		Total	60		

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Atri Sarkar (AS)

	Planned				
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
Basic Electricity and	Electrostatics: Coulomb's law, Electric field, Electric field lines. Superposition Principle. Electric flux. Idea of charge density (linear, surface, volume) and continuous charge distributions. Gauss' Law (in integral form) with applications to charge distributions with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field.	Electrodynamics, D.J. Griffiths 3rd Edn	3		
Magnetism (KB)	Introduction to electrostatic potential, Equipotential surfaces. Calculation of potential for linear, surface and volume charge distributions: simple cases (e.g.: uniform line charge, disc, spherical shell, sphere etc.). Potential and field due to a physical dipole; Torque, force and Potential Energy of an electric dipole in a uniform electric field	Electricity and Magnetism, D.Chattopadhyay and P.C.Rakshit, New Central Book Agency, 2011	4	Chalk and talk	

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Atri Sarkar (AS)

	Electrostatic energy of system of charges, a charged sphere. Conductors in an electrostatic Field. Mechanical force on the surface of a charged conductor. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Capacitance for parallel-plate, cylindrical, spherical capacitors (without dielectrics). Energy stored in Electrostatic field.	Foundations of Electricity & Magnetism by Dr. Basudev Ghosh	4		
Basic Electricity and Magnetism (GP)	Lorentz force: Force on a moving charge in simultaneous electric and magnetic fields, force on a current carrying conductor in a magnetic field. Trajectory of charged particles in uniform electric field, crossed uniform electric and magnetic fields. Basic principle of cyclotron.	Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings	3	Chalk and talk	

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Atri Sarkar (AS)

	Magnetostatics: Concept of current density (linear, surface, volume). Equation of continuity. Biot and Savart's law, magnetic field due to a straight conductor, circular coil, Helmholtz coil, solenoid. Ampere's circuital law with applications (Infinite long wire, infinite solenoid, infinite current sheet). Magnetic field due to a small current loop concept of magnetic dipole. Torque and force on magnetic dipole in a uniform magnetic field.	Electricity and Magnetism, D.Chattopadhyay and P.C.Rakshit, New Central Book Agency, 2011 Foundations of Electricity & Magnetism by Dr. Basudev Ghosh	8		
Introduction to Thermodynami cs (AS)	Kinetic theory: Macroscopic and microscopic description of matter, Postulates of molecular kinetic theory of an ideal gas, Relation between microscopic and macroscopic state variables, Maxwell's velocity distribution, Concept of pressure and temperature.	Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill	3	Chalk and talk	
	Zeroth and First Law of Thermodynamics: Extensive and intensive thermodynamic variables.		9		

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Atri Sarkar (AS)

Thermodynamic equilibrium, zeroth law of	Thermal Physics by Dr.		
J 1	A. B. Gupta & Dr. H. P.		
	Roy		
Concept of work & heat, State Functions, internal	КОУ		
energy and first law of Thermodynamics, its			
differential form, first law & various processes.			
Applications of first law: General relation			
between CP and CV, work done during			
isothermal and adiabatic processes,			
compressibility and expansion coefficient.			
Second Law of Thermodynamics: Reversible and			
irreversible process with examples. Interconversion			
of work and heat. Heat engines. Carnot's cycle,			
Carnot engine & efficiency. Refrigerator &			
coefficient of performance, Kelvin-Planck and		10	
Clausius statements for the second law and their		10	
equivalence. Carnot's Theorem. Applications of			
second law of Thermodynamics: Thermodynamic			
scale of temperature and its equivalence to perfect			
gas scale.			
545 Scarc.			

Department Name: Physics

Name of Faculty: Dr. Gayatri Pal (GP). Ms. Kathakali Biswas (KB), Dr. Atri Sarkar (AS)

Entropy: Concept of Entropy, Clausius theorem. Clausius inequality, Second law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of increase of Entropy. Entropy changes in reversible and irreversible processes with examples. Entropy of the universe. Principle of increase of Entropy. Temperature- Entropy diagrams for different cycles. Third law of Thermodynamics. Unattainability of absolute zero.		6	
	Total	50	

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

Paper Name & Code: IDC (INTERDISCIPLINARY COURSE): FRONTIERS IN PHYSICS

Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Role of proper reasoning and experiments, with examples. Inductive and deductive logic.	1. Six Easy Pieces –	2		
1. Nature of Science	The character of physical laws, including universality.	Richard P. Feynman 2. The first three	2	Chalk and Talk	
	Difference between science and pseudo science	minutes – Steven Weinberg	1		
	The Copernican revolution, Kepler's laws and the Solar system, Galileo and birth of Telescopic Astronomy,	1. Six Easy Pieces –	4		
2. Universe	Modern observations: Stars and galaxies, Life cycle of stars. Birth of the Universe,	Richard P. Feynman 2. The first three minutes — Steven Weinberg	3	Chalk and Talk	
	Big Bang and Hubble expansion, Dark matter and dark energy.		3		
3. Matter	Atoms and molecules: The physical basis of the Periodic Table	1. The character of physical laws –	2	Chalk and Talk	

Subject Name/Code: Physics

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

Paper Name & Code: IDC (INTERDISCIPLINARY COURSE): FRONTIERS IN PHYSICS

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	Heat and Thermodynamics: Basic idea about the kinetic theory of gases; Distinction between ideal and real gases; The three laws of thermodynamics. Concept of Entropy. Radioactivity: Alpha, beta & gamma decay; X-Rays – Properties	Richard P. Feynman 2. Introduction to Astronomy: From Darkness to Blazing Glory – J. W Scott, JAS Educational Publications	3		
	Structure of the atom: Electron, Nucleus: proton and neutron. Mention of the Standard Model of particles & interactions.		4	Chalk and Talk	
4. Forces	Laws of falling bodies, Inertia, Gravitation, Electricity and Magnetism, Light and its dual property.	Six Easy Pieces — Richard P. Feynman The first three minutes	5	Chalk and Talk	

Department Name: Physics

Name of Faculty: Dr. Atri Sarkar (AS)

Paper Name & Code: IDC (INTERDISCIPLINARY COURSE): FRONTIERS IN PHYSICS

Planned					
Unit / Group / Module / Article	Topics	Reference Books	No of Lecture Planned	Content Delivery Technique	Remarks / Comments
	The microscopic world of Quantum Mechanics.	– Steven Weinberg	5		
	Special and General Theory of Relativity (brief and qualitative ideas only)		5	Chalk and Talk	
	Total Lectures		45		